Loading…
A Duhamel approach for the Langevin equations with holonomic constraints
To simulate polymer flows in microscale environments we have developed a numerical method that couples stochastic particle dynamics with an efficient incompressible Navier-Stokes solver. Here, we examine properties of the particle solver alone. We derive a Duhamel-form stochastic particle method for...
Saved in:
Published in: | Molecular simulation 2009-05, Vol.35 (6), p.440-447 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-80b3e1b7b32939e87ffdc8da9fc19ec0f317dd283575df9a93c0f06099a036c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-80b3e1b7b32939e87ffdc8da9fc19ec0f317dd283575df9a93c0f06099a036c43 |
container_end_page | 447 |
container_issue | 6 |
container_start_page | 440 |
container_title | Molecular simulation |
container_volume | 35 |
creator | Kallemov, B. Miller, G.H. Trebotich, D. |
description | To simulate polymer flows in microscale environments we have developed a numerical method that couples stochastic particle dynamics with an efficient incompressible Navier-Stokes solver. Here, we examine properties of the particle solver alone. We derive a Duhamel-form stochastic particle method for freely jointed polymers and demonstrate that it achieves 2-order weak convergence and 3/2-order strong convergence with holonomic constraints. For time steps approaching the
relaxation time, our method displays greatly enhanced stability relative to comparable solvers based on linearised dynamics. Under these same conditions, our method has solution errors that are approximately six orders of magnitude smaller than that for the linearised algorithm. |
doi_str_mv | 10.1080/08927020802541327 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_08927020802541327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34483049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-80b3e1b7b32939e87ffdc8da9fc19ec0f317dd283575df9a93c0f06099a036c43</originalsourceid><addsrcrecordid>eNqFkE9PAyEQxYnRxFr9AN44eVsdYLcsiZem_qlJEy96JpQFF7O7tECt_fbS1FtjPM3kzfvNTB5C1wRuCdRwB7WgHGhuaVUSRvkJGhGgooCSVadotJ8X2UDP0UWMnwCUVOVkhOZT_LBpVW86rFar4JVusfUBp9bghRo-zJcbsFlvVHJ-iHjrUotb3_nB905jnbUUlBtSvERnVnXRXP3WMXp_enybzYvF6_PLbLooNOM8FTUsmSFLvmRUMGFqbm2j60YJq4kwGiwjvGlozSpeNVYowbIGExBCAZvoko3RzWFvfna9MTHJ3kVtuk4Nxm-iZGVZMyhFNpKDUQcfYzBWroLrVdhJAnKfmTzKLDP8wLghh9CrrQ9dI5PadT7YoAbt4jEl03fK5P2_JPv78A8OqIRO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34483049</pqid></control><display><type>article</type><title>A Duhamel approach for the Langevin equations with holonomic constraints</title><source>Taylor and Francis Science and Technology Collection</source><creator>Kallemov, B. ; Miller, G.H. ; Trebotich, D.</creator><creatorcontrib>Kallemov, B. ; Miller, G.H. ; Trebotich, D.</creatorcontrib><description>To simulate polymer flows in microscale environments we have developed a numerical method that couples stochastic particle dynamics with an efficient incompressible Navier-Stokes solver. Here, we examine properties of the particle solver alone. We derive a Duhamel-form stochastic particle method for freely jointed polymers and demonstrate that it achieves 2-order weak convergence and 3/2-order strong convergence with holonomic constraints. For time steps approaching the
relaxation time, our method displays greatly enhanced stability relative to comparable solvers based on linearised dynamics. Under these same conditions, our method has solution errors that are approximately six orders of magnitude smaller than that for the linearised algorithm.</description><identifier>ISSN: 0892-7022</identifier><identifier>EISSN: 1029-0435</identifier><identifier>DOI: 10.1080/08927020802541327</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>particle-fluid coupling ; RATTLE ; stochastic particle dynamics</subject><ispartof>Molecular simulation, 2009-05, Vol.35 (6), p.440-447</ispartof><rights>Copyright Taylor & Francis Group, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-80b3e1b7b32939e87ffdc8da9fc19ec0f317dd283575df9a93c0f06099a036c43</citedby><cites>FETCH-LOGICAL-c377t-80b3e1b7b32939e87ffdc8da9fc19ec0f317dd283575df9a93c0f06099a036c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kallemov, B.</creatorcontrib><creatorcontrib>Miller, G.H.</creatorcontrib><creatorcontrib>Trebotich, D.</creatorcontrib><title>A Duhamel approach for the Langevin equations with holonomic constraints</title><title>Molecular simulation</title><description>To simulate polymer flows in microscale environments we have developed a numerical method that couples stochastic particle dynamics with an efficient incompressible Navier-Stokes solver. Here, we examine properties of the particle solver alone. We derive a Duhamel-form stochastic particle method for freely jointed polymers and demonstrate that it achieves 2-order weak convergence and 3/2-order strong convergence with holonomic constraints. For time steps approaching the
relaxation time, our method displays greatly enhanced stability relative to comparable solvers based on linearised dynamics. Under these same conditions, our method has solution errors that are approximately six orders of magnitude smaller than that for the linearised algorithm.</description><subject>particle-fluid coupling</subject><subject>RATTLE</subject><subject>stochastic particle dynamics</subject><issn>0892-7022</issn><issn>1029-0435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PAyEQxYnRxFr9AN44eVsdYLcsiZem_qlJEy96JpQFF7O7tECt_fbS1FtjPM3kzfvNTB5C1wRuCdRwB7WgHGhuaVUSRvkJGhGgooCSVadotJ8X2UDP0UWMnwCUVOVkhOZT_LBpVW86rFar4JVusfUBp9bghRo-zJcbsFlvVHJ-iHjrUotb3_nB905jnbUUlBtSvERnVnXRXP3WMXp_enybzYvF6_PLbLooNOM8FTUsmSFLvmRUMGFqbm2j60YJq4kwGiwjvGlozSpeNVYowbIGExBCAZvoko3RzWFvfna9MTHJ3kVtuk4Nxm-iZGVZMyhFNpKDUQcfYzBWroLrVdhJAnKfmTzKLDP8wLghh9CrrQ9dI5PadT7YoAbt4jEl03fK5P2_JPv78A8OqIRO</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Kallemov, B.</creator><creator>Miller, G.H.</creator><creator>Trebotich, D.</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200905</creationdate><title>A Duhamel approach for the Langevin equations with holonomic constraints</title><author>Kallemov, B. ; Miller, G.H. ; Trebotich, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-80b3e1b7b32939e87ffdc8da9fc19ec0f317dd283575df9a93c0f06099a036c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>particle-fluid coupling</topic><topic>RATTLE</topic><topic>stochastic particle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kallemov, B.</creatorcontrib><creatorcontrib>Miller, G.H.</creatorcontrib><creatorcontrib>Trebotich, D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Molecular simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kallemov, B.</au><au>Miller, G.H.</au><au>Trebotich, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Duhamel approach for the Langevin equations with holonomic constraints</atitle><jtitle>Molecular simulation</jtitle><date>2009-05</date><risdate>2009</risdate><volume>35</volume><issue>6</issue><spage>440</spage><epage>447</epage><pages>440-447</pages><issn>0892-7022</issn><eissn>1029-0435</eissn><abstract>To simulate polymer flows in microscale environments we have developed a numerical method that couples stochastic particle dynamics with an efficient incompressible Navier-Stokes solver. Here, we examine properties of the particle solver alone. We derive a Duhamel-form stochastic particle method for freely jointed polymers and demonstrate that it achieves 2-order weak convergence and 3/2-order strong convergence with holonomic constraints. For time steps approaching the
relaxation time, our method displays greatly enhanced stability relative to comparable solvers based on linearised dynamics. Under these same conditions, our method has solution errors that are approximately six orders of magnitude smaller than that for the linearised algorithm.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/08927020802541327</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-7022 |
ispartof | Molecular simulation, 2009-05, Vol.35 (6), p.440-447 |
issn | 0892-7022 1029-0435 |
language | eng |
recordid | cdi_crossref_primary_10_1080_08927020802541327 |
source | Taylor and Francis Science and Technology Collection |
subjects | particle-fluid coupling RATTLE stochastic particle dynamics |
title | A Duhamel approach for the Langevin equations with holonomic constraints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Duhamel%20approach%20for%20the%20Langevin%20equations%20with%20holonomic%20constraints&rft.jtitle=Molecular%20simulation&rft.au=Kallemov,%20B.&rft.date=2009-05&rft.volume=35&rft.issue=6&rft.spage=440&rft.epage=447&rft.pages=440-447&rft.issn=0892-7022&rft.eissn=1029-0435&rft_id=info:doi/10.1080/08927020802541327&rft_dat=%3Cproquest_cross%3E34483049%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-80b3e1b7b32939e87ffdc8da9fc19ec0f317dd283575df9a93c0f06099a036c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34483049&rft_id=info:pmid/&rfr_iscdi=true |