Loading…

Designed and fabrication of triple-layered vascular scaffold with microchannels

Currently, one of the best preparation strategies for the triple-layered vascular scaffold is to imitate the three-layer structure of natural blood vessels to achieve the biofunctional characteristics of vascular transplantation. Here, we developed a combinatorial method to fabricate triple-layered...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomaterials science. Polymer ed. 2021-04, Vol.32 (6), p.714-734
Main Authors: Hu, Qingxi, Shen, Zhipeng, Zhang, Haiguang, Liu, Suihong, Feng, Rui, Feng, Jiaxuan, Ramalingam, Murugan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Currently, one of the best preparation strategies for the triple-layered vascular scaffold is to imitate the three-layer structure of natural blood vessels to achieve the biofunctional characteristics of vascular transplantation. Here, we developed a combinatorial method to fabricate triple-layered vascular scaffold (TVS) by using electrospinning and coaxial 3 D printing. First, Polycaprolactone-collagen (PCL-Col) was applied to prepared the inner layer of TVS by electrospinning. Second, egg white/sodium alginate (EW/SA) blend hydrogel was extruded to form hollow filaments by coaxial 3 D printing and crosslinking mechanism, which enwound around the surface of the inner layer in a circumferential direction as the intermediate layer of TVS. Finally, electrospun PCL-Col nanofibers were wrapped on the surface of hydrogel layer as the outer layer of TVS. The morphological characterization and mechanical strength of the fabricated TVS were measured. Compared with natural blood vessels, results shown that ultimate tensile stress (UTS), strain to failure (STF), the estimated burst strength and the suture retention strength (SRS) of TVS were superior. Also, the fabricated TVS exhibits good hydrophilicity and excellent flexibility. Moreover, the biocompatibility of TVS was investigated through human umbilical vein endothelial cells (HUVECs), the results demonstrated that cells can successfully attach the surface of graft and maintain high viability. In summary, all of results demonstrated that this method could fabricate a novel triple-layered vascular scaffold, possessing appropriate mechanical properties and good biological properties, which has the potential to be used in tissue engineered vascular grafts applications.
ISSN:0920-5063
1568-5624
DOI:10.1080/09205063.2020.1864083