Loading…

Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter

We report a link (or optical analogue) between the relativistic Thomas rotation angle effect found in the special theory of relativity (STR), and the phase response of an all-pass filter (APF), one of the building blocks of the rapidly evolving field of photonic integrated circuits. This link opens...

Full description

Saved in:
Bibliographic Details
Published in:Journal of modern optics 2018-11, Vol.65 (19), p.2171-2178
Main Authors: Dingel, Benjamin B., Buenaventura, Aria, Murakawa, Koji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93
cites cdi_FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93
container_end_page 2178
container_issue 19
container_start_page 2171
container_title Journal of modern optics
container_volume 65
creator Dingel, Benjamin B.
Buenaventura, Aria
Murakawa, Koji
description We report a link (or optical analogue) between the relativistic Thomas rotation angle effect found in the special theory of relativity (STR), and the phase response of an all-pass filter (APF), one of the building blocks of the rapidly evolving field of photonic integrated circuits. This link opens up the possibility of investigating STR phenomena in a 'laboratory-on-a-chip' setting. The Thomas effect is a spatial rotation of the reference frame due to Einstein's velocity addition law of two successive velocities travelling in non-collinear directions. On the other hand, the APF is implemented with a microring resonator device with one waveguide bus. The analogue is established by associating two parameters. First, the transmission coupling coefficient τ of the APF is made to equal with the product of the two relativistic normalized velocities V 1 and V 2 (τ = V 1 V 2 ), where the normalized velocities V 1  = tanh [β 1 /2] and V 2  = tanh [β 2 /2] with β 1 (=tanh −1 (v 1 /c)) and β 2 (=tanh −1 (v 2 /c)) being the rapidity values associated with the standard normalized speed. Second, the single-pass phase shift φ (or equivalently the phase detuning, Δφ or wavelength detuning, Δλ) parameter of the APF is related to the so-called generating angle θ of the two non-collinear relativistic velocities V 1 and V 2 . We also introduce an additional photonic circuit to convert this phase-encoded Thomas angle into intensity for direct measurement. Lastly, other important and broader consequences of this link are briefly discussed.
doi_str_mv 10.1080/09500340.2018.1502826
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_09500340_2018_1502826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091197976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93</originalsourceid><addsrcrecordid>eNp9kc1uFDEQhC0EEkvgEZAscZ6l_TOznhsogoAUKZdwtno87awj73iwvUT7IjwvXm1y5dSt6q_q0MXYRwFbAQY-w9gDKA1bCcJsRQ_SyOEV2wg1yE6B1q_Z5sx0Z-gte1fKIwAMoOSG_b1ba3AYOS4Y08OR-ET1iWjhmSLW8CeUduf3-3TAwsl7cpWHhZeVXGi2F6qeWsLM1z0WamJZ09KW5HndU1NTTUuLCUulh4yVZu5CdsdQSzc1x8wxxm7FUrgPsVJ-z954jIU-PM8r9uv7t_vrH93t3c3P66-3nVPK1M6gB-mcmx3unJRGaaJBOg-zRklqFqDGSe961DgQTGDkOEkzzb1HbTSO6op9uuSuOf0-Uqn2MR1ze0WxEkYhxt24GxrVXyiXUymZvF1zOGA-WQH2XIF9qcCeK7DPFTTfl4svLD7lAz6lHGdb8RRT9hkXF4pV_4_4B9xhkT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091197976</pqid></control><display><type>article</type><title>Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter</title><source>Taylor and Francis Science and Technology Collection</source><creator>Dingel, Benjamin B. ; Buenaventura, Aria ; Murakawa, Koji</creator><creatorcontrib>Dingel, Benjamin B. ; Buenaventura, Aria ; Murakawa, Koji</creatorcontrib><description>We report a link (or optical analogue) between the relativistic Thomas rotation angle effect found in the special theory of relativity (STR), and the phase response of an all-pass filter (APF), one of the building blocks of the rapidly evolving field of photonic integrated circuits. This link opens up the possibility of investigating STR phenomena in a 'laboratory-on-a-chip' setting. The Thomas effect is a spatial rotation of the reference frame due to Einstein's velocity addition law of two successive velocities travelling in non-collinear directions. On the other hand, the APF is implemented with a microring resonator device with one waveguide bus. The analogue is established by associating two parameters. First, the transmission coupling coefficient τ of the APF is made to equal with the product of the two relativistic normalized velocities V 1 and V 2 (τ = V 1 V 2 ), where the normalized velocities V 1  = tanh [β 1 /2] and V 2  = tanh [β 2 /2] with β 1 (=tanh −1 (v 1 /c)) and β 2 (=tanh −1 (v 2 /c)) being the rapidity values associated with the standard normalized speed. Second, the single-pass phase shift φ (or equivalently the phase detuning, Δφ or wavelength detuning, Δλ) parameter of the APF is related to the so-called generating angle θ of the two non-collinear relativistic velocities V 1 and V 2 . We also introduce an additional photonic circuit to convert this phase-encoded Thomas angle into intensity for direct measurement. Lastly, other important and broader consequences of this link are briefly discussed.</description><identifier>ISSN: 0950-0340</identifier><identifier>EISSN: 1362-3044</identifier><identifier>DOI: 10.1080/09500340.2018.1502826</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>all-pass filter (APF) ; Coding ; Coupling coefficients ; Integrated circuits ; microring resonator (MRR) ; Parameters ; Photonic integrated circuits ; Photonics ; Relativism ; Relativistic effects ; Relativistic velocity ; Relativity ; Rotation ; special relativity ; Theory of relativity ; Thomas effect ; Velocity ; Wigner angle</subject><ispartof>Journal of modern optics, 2018-11, Vol.65 (19), p.2171-2178</ispartof><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93</citedby><cites>FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dingel, Benjamin B.</creatorcontrib><creatorcontrib>Buenaventura, Aria</creatorcontrib><creatorcontrib>Murakawa, Koji</creatorcontrib><title>Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter</title><title>Journal of modern optics</title><description>We report a link (or optical analogue) between the relativistic Thomas rotation angle effect found in the special theory of relativity (STR), and the phase response of an all-pass filter (APF), one of the building blocks of the rapidly evolving field of photonic integrated circuits. This link opens up the possibility of investigating STR phenomena in a 'laboratory-on-a-chip' setting. The Thomas effect is a spatial rotation of the reference frame due to Einstein's velocity addition law of two successive velocities travelling in non-collinear directions. On the other hand, the APF is implemented with a microring resonator device with one waveguide bus. The analogue is established by associating two parameters. First, the transmission coupling coefficient τ of the APF is made to equal with the product of the two relativistic normalized velocities V 1 and V 2 (τ = V 1 V 2 ), where the normalized velocities V 1  = tanh [β 1 /2] and V 2  = tanh [β 2 /2] with β 1 (=tanh −1 (v 1 /c)) and β 2 (=tanh −1 (v 2 /c)) being the rapidity values associated with the standard normalized speed. Second, the single-pass phase shift φ (or equivalently the phase detuning, Δφ or wavelength detuning, Δλ) parameter of the APF is related to the so-called generating angle θ of the two non-collinear relativistic velocities V 1 and V 2 . We also introduce an additional photonic circuit to convert this phase-encoded Thomas angle into intensity for direct measurement. Lastly, other important and broader consequences of this link are briefly discussed.</description><subject>all-pass filter (APF)</subject><subject>Coding</subject><subject>Coupling coefficients</subject><subject>Integrated circuits</subject><subject>microring resonator (MRR)</subject><subject>Parameters</subject><subject>Photonic integrated circuits</subject><subject>Photonics</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativistic velocity</subject><subject>Relativity</subject><subject>Rotation</subject><subject>special relativity</subject><subject>Theory of relativity</subject><subject>Thomas effect</subject><subject>Velocity</subject><subject>Wigner angle</subject><issn>0950-0340</issn><issn>1362-3044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uFDEQhC0EEkvgEZAscZ6l_TOznhsogoAUKZdwtno87awj73iwvUT7IjwvXm1y5dSt6q_q0MXYRwFbAQY-w9gDKA1bCcJsRQ_SyOEV2wg1yE6B1q_Z5sx0Z-gte1fKIwAMoOSG_b1ba3AYOS4Y08OR-ET1iWjhmSLW8CeUduf3-3TAwsl7cpWHhZeVXGi2F6qeWsLM1z0WamJZ09KW5HndU1NTTUuLCUulh4yVZu5CdsdQSzc1x8wxxm7FUrgPsVJ-z954jIU-PM8r9uv7t_vrH93t3c3P66-3nVPK1M6gB-mcmx3unJRGaaJBOg-zRklqFqDGSe961DgQTGDkOEkzzb1HbTSO6op9uuSuOf0-Uqn2MR1ze0WxEkYhxt24GxrVXyiXUymZvF1zOGA-WQH2XIF9qcCeK7DPFTTfl4svLD7lAz6lHGdb8RRT9hkXF4pV_4_4B9xhkT4</recordid><startdate>20181111</startdate><enddate>20181111</enddate><creator>Dingel, Benjamin B.</creator><creator>Buenaventura, Aria</creator><creator>Murakawa, Koji</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20181111</creationdate><title>Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter</title><author>Dingel, Benjamin B. ; Buenaventura, Aria ; Murakawa, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>all-pass filter (APF)</topic><topic>Coding</topic><topic>Coupling coefficients</topic><topic>Integrated circuits</topic><topic>microring resonator (MRR)</topic><topic>Parameters</topic><topic>Photonic integrated circuits</topic><topic>Photonics</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativistic velocity</topic><topic>Relativity</topic><topic>Rotation</topic><topic>special relativity</topic><topic>Theory of relativity</topic><topic>Thomas effect</topic><topic>Velocity</topic><topic>Wigner angle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dingel, Benjamin B.</creatorcontrib><creatorcontrib>Buenaventura, Aria</creatorcontrib><creatorcontrib>Murakawa, Koji</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of modern optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dingel, Benjamin B.</au><au>Buenaventura, Aria</au><au>Murakawa, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter</atitle><jtitle>Journal of modern optics</jtitle><date>2018-11-11</date><risdate>2018</risdate><volume>65</volume><issue>19</issue><spage>2171</spage><epage>2178</epage><pages>2171-2178</pages><issn>0950-0340</issn><eissn>1362-3044</eissn><abstract>We report a link (or optical analogue) between the relativistic Thomas rotation angle effect found in the special theory of relativity (STR), and the phase response of an all-pass filter (APF), one of the building blocks of the rapidly evolving field of photonic integrated circuits. This link opens up the possibility of investigating STR phenomena in a 'laboratory-on-a-chip' setting. The Thomas effect is a spatial rotation of the reference frame due to Einstein's velocity addition law of two successive velocities travelling in non-collinear directions. On the other hand, the APF is implemented with a microring resonator device with one waveguide bus. The analogue is established by associating two parameters. First, the transmission coupling coefficient τ of the APF is made to equal with the product of the two relativistic normalized velocities V 1 and V 2 (τ = V 1 V 2 ), where the normalized velocities V 1  = tanh [β 1 /2] and V 2  = tanh [β 2 /2] with β 1 (=tanh −1 (v 1 /c)) and β 2 (=tanh −1 (v 2 /c)) being the rapidity values associated with the standard normalized speed. Second, the single-pass phase shift φ (or equivalently the phase detuning, Δφ or wavelength detuning, Δλ) parameter of the APF is related to the so-called generating angle θ of the two non-collinear relativistic velocities V 1 and V 2 . We also introduce an additional photonic circuit to convert this phase-encoded Thomas angle into intensity for direct measurement. Lastly, other important and broader consequences of this link are briefly discussed.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/09500340.2018.1502826</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-0340
ispartof Journal of modern optics, 2018-11, Vol.65 (19), p.2171-2178
issn 0950-0340
1362-3044
language eng
recordid cdi_crossref_primary_10_1080_09500340_2018_1502826
source Taylor and Francis Science and Technology Collection
subjects all-pass filter (APF)
Coding
Coupling coefficients
Integrated circuits
microring resonator (MRR)
Parameters
Photonic integrated circuits
Photonics
Relativism
Relativistic effects
Relativistic velocity
Relativity
Rotation
special relativity
Theory of relativity
Thomas effect
Velocity
Wigner angle
title Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20analogue%20between%20relativistic%20Thomas%20effect%20in%20special%20relativity%20and%20phase%20response%20of%20the%20photonic%20integrated%20circuits-based%20all-pass%20filter&rft.jtitle=Journal%20of%20modern%20optics&rft.au=Dingel,%20Benjamin%20B.&rft.date=2018-11-11&rft.volume=65&rft.issue=19&rft.spage=2171&rft.epage=2178&rft.pages=2171-2178&rft.issn=0950-0340&rft.eissn=1362-3044&rft_id=info:doi/10.1080/09500340.2018.1502826&rft_dat=%3Cproquest_cross%3E2091197976%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091197976&rft_id=info:pmid/&rfr_iscdi=true