Loading…
Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter
We report a link (or optical analogue) between the relativistic Thomas rotation angle effect found in the special theory of relativity (STR), and the phase response of an all-pass filter (APF), one of the building blocks of the rapidly evolving field of photonic integrated circuits. This link opens...
Saved in:
Published in: | Journal of modern optics 2018-11, Vol.65 (19), p.2171-2178 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93 |
container_end_page | 2178 |
container_issue | 19 |
container_start_page | 2171 |
container_title | Journal of modern optics |
container_volume | 65 |
creator | Dingel, Benjamin B. Buenaventura, Aria Murakawa, Koji |
description | We report a link (or optical analogue) between the relativistic Thomas rotation angle effect found in the special theory of relativity (STR), and the phase response of an all-pass filter (APF), one of the building blocks of the rapidly evolving field of photonic integrated circuits. This link opens up the possibility of investigating STR phenomena in a 'laboratory-on-a-chip' setting. The Thomas effect is a spatial rotation of the reference frame due to Einstein's velocity addition law of two successive velocities travelling in non-collinear directions. On the other hand, the APF is implemented with a microring resonator device with one waveguide bus. The analogue is established by associating two parameters. First, the transmission coupling coefficient τ of the APF is made to equal with the product of the two relativistic normalized velocities V
1
and V
2
(τ = V
1
V
2
), where the normalized velocities V
1
= tanh [β
1
/2] and V
2
= tanh [β
2
/2] with β
1
(=tanh
−1
(v
1
/c)) and β
2
(=tanh
−1
(v
2
/c)) being the rapidity values associated with the standard normalized speed. Second, the single-pass phase shift φ (or equivalently the phase detuning, Δφ or wavelength detuning, Δλ) parameter of the APF is related to the so-called generating angle θ of the two non-collinear relativistic velocities V
1
and V
2
. We also introduce an additional photonic circuit to convert this phase-encoded Thomas angle into intensity for direct measurement. Lastly, other important and broader consequences of this link are briefly discussed. |
doi_str_mv | 10.1080/09500340.2018.1502826 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_09500340_2018_1502826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091197976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93</originalsourceid><addsrcrecordid>eNp9kc1uFDEQhC0EEkvgEZAscZ6l_TOznhsogoAUKZdwtno87awj73iwvUT7IjwvXm1y5dSt6q_q0MXYRwFbAQY-w9gDKA1bCcJsRQ_SyOEV2wg1yE6B1q_Z5sx0Z-gte1fKIwAMoOSG_b1ba3AYOS4Y08OR-ET1iWjhmSLW8CeUduf3-3TAwsl7cpWHhZeVXGi2F6qeWsLM1z0WamJZ09KW5HndU1NTTUuLCUulh4yVZu5CdsdQSzc1x8wxxm7FUrgPsVJ-z954jIU-PM8r9uv7t_vrH93t3c3P66-3nVPK1M6gB-mcmx3unJRGaaJBOg-zRklqFqDGSe961DgQTGDkOEkzzb1HbTSO6op9uuSuOf0-Uqn2MR1ze0WxEkYhxt24GxrVXyiXUymZvF1zOGA-WQH2XIF9qcCeK7DPFTTfl4svLD7lAz6lHGdb8RRT9hkXF4pV_4_4B9xhkT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091197976</pqid></control><display><type>article</type><title>Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter</title><source>Taylor and Francis Science and Technology Collection</source><creator>Dingel, Benjamin B. ; Buenaventura, Aria ; Murakawa, Koji</creator><creatorcontrib>Dingel, Benjamin B. ; Buenaventura, Aria ; Murakawa, Koji</creatorcontrib><description>We report a link (or optical analogue) between the relativistic Thomas rotation angle effect found in the special theory of relativity (STR), and the phase response of an all-pass filter (APF), one of the building blocks of the rapidly evolving field of photonic integrated circuits. This link opens up the possibility of investigating STR phenomena in a 'laboratory-on-a-chip' setting. The Thomas effect is a spatial rotation of the reference frame due to Einstein's velocity addition law of two successive velocities travelling in non-collinear directions. On the other hand, the APF is implemented with a microring resonator device with one waveguide bus. The analogue is established by associating two parameters. First, the transmission coupling coefficient τ of the APF is made to equal with the product of the two relativistic normalized velocities V
1
and V
2
(τ = V
1
V
2
), where the normalized velocities V
1
= tanh [β
1
/2] and V
2
= tanh [β
2
/2] with β
1
(=tanh
−1
(v
1
/c)) and β
2
(=tanh
−1
(v
2
/c)) being the rapidity values associated with the standard normalized speed. Second, the single-pass phase shift φ (or equivalently the phase detuning, Δφ or wavelength detuning, Δλ) parameter of the APF is related to the so-called generating angle θ of the two non-collinear relativistic velocities V
1
and V
2
. We also introduce an additional photonic circuit to convert this phase-encoded Thomas angle into intensity for direct measurement. Lastly, other important and broader consequences of this link are briefly discussed.</description><identifier>ISSN: 0950-0340</identifier><identifier>EISSN: 1362-3044</identifier><identifier>DOI: 10.1080/09500340.2018.1502826</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>all-pass filter (APF) ; Coding ; Coupling coefficients ; Integrated circuits ; microring resonator (MRR) ; Parameters ; Photonic integrated circuits ; Photonics ; Relativism ; Relativistic effects ; Relativistic velocity ; Relativity ; Rotation ; special relativity ; Theory of relativity ; Thomas effect ; Velocity ; Wigner angle</subject><ispartof>Journal of modern optics, 2018-11, Vol.65 (19), p.2171-2178</ispartof><rights>2018 Informa UK Limited, trading as Taylor & Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93</citedby><cites>FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dingel, Benjamin B.</creatorcontrib><creatorcontrib>Buenaventura, Aria</creatorcontrib><creatorcontrib>Murakawa, Koji</creatorcontrib><title>Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter</title><title>Journal of modern optics</title><description>We report a link (or optical analogue) between the relativistic Thomas rotation angle effect found in the special theory of relativity (STR), and the phase response of an all-pass filter (APF), one of the building blocks of the rapidly evolving field of photonic integrated circuits. This link opens up the possibility of investigating STR phenomena in a 'laboratory-on-a-chip' setting. The Thomas effect is a spatial rotation of the reference frame due to Einstein's velocity addition law of two successive velocities travelling in non-collinear directions. On the other hand, the APF is implemented with a microring resonator device with one waveguide bus. The analogue is established by associating two parameters. First, the transmission coupling coefficient τ of the APF is made to equal with the product of the two relativistic normalized velocities V
1
and V
2
(τ = V
1
V
2
), where the normalized velocities V
1
= tanh [β
1
/2] and V
2
= tanh [β
2
/2] with β
1
(=tanh
−1
(v
1
/c)) and β
2
(=tanh
−1
(v
2
/c)) being the rapidity values associated with the standard normalized speed. Second, the single-pass phase shift φ (or equivalently the phase detuning, Δφ or wavelength detuning, Δλ) parameter of the APF is related to the so-called generating angle θ of the two non-collinear relativistic velocities V
1
and V
2
. We also introduce an additional photonic circuit to convert this phase-encoded Thomas angle into intensity for direct measurement. Lastly, other important and broader consequences of this link are briefly discussed.</description><subject>all-pass filter (APF)</subject><subject>Coding</subject><subject>Coupling coefficients</subject><subject>Integrated circuits</subject><subject>microring resonator (MRR)</subject><subject>Parameters</subject><subject>Photonic integrated circuits</subject><subject>Photonics</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativistic velocity</subject><subject>Relativity</subject><subject>Rotation</subject><subject>special relativity</subject><subject>Theory of relativity</subject><subject>Thomas effect</subject><subject>Velocity</subject><subject>Wigner angle</subject><issn>0950-0340</issn><issn>1362-3044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uFDEQhC0EEkvgEZAscZ6l_TOznhsogoAUKZdwtno87awj73iwvUT7IjwvXm1y5dSt6q_q0MXYRwFbAQY-w9gDKA1bCcJsRQ_SyOEV2wg1yE6B1q_Z5sx0Z-gte1fKIwAMoOSG_b1ba3AYOS4Y08OR-ET1iWjhmSLW8CeUduf3-3TAwsl7cpWHhZeVXGi2F6qeWsLM1z0WamJZ09KW5HndU1NTTUuLCUulh4yVZu5CdsdQSzc1x8wxxm7FUrgPsVJ-z954jIU-PM8r9uv7t_vrH93t3c3P66-3nVPK1M6gB-mcmx3unJRGaaJBOg-zRklqFqDGSe961DgQTGDkOEkzzb1HbTSO6op9uuSuOf0-Uqn2MR1ze0WxEkYhxt24GxrVXyiXUymZvF1zOGA-WQH2XIF9qcCeK7DPFTTfl4svLD7lAz6lHGdb8RRT9hkXF4pV_4_4B9xhkT4</recordid><startdate>20181111</startdate><enddate>20181111</enddate><creator>Dingel, Benjamin B.</creator><creator>Buenaventura, Aria</creator><creator>Murakawa, Koji</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20181111</creationdate><title>Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter</title><author>Dingel, Benjamin B. ; Buenaventura, Aria ; Murakawa, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>all-pass filter (APF)</topic><topic>Coding</topic><topic>Coupling coefficients</topic><topic>Integrated circuits</topic><topic>microring resonator (MRR)</topic><topic>Parameters</topic><topic>Photonic integrated circuits</topic><topic>Photonics</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativistic velocity</topic><topic>Relativity</topic><topic>Rotation</topic><topic>special relativity</topic><topic>Theory of relativity</topic><topic>Thomas effect</topic><topic>Velocity</topic><topic>Wigner angle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dingel, Benjamin B.</creatorcontrib><creatorcontrib>Buenaventura, Aria</creatorcontrib><creatorcontrib>Murakawa, Koji</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of modern optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dingel, Benjamin B.</au><au>Buenaventura, Aria</au><au>Murakawa, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter</atitle><jtitle>Journal of modern optics</jtitle><date>2018-11-11</date><risdate>2018</risdate><volume>65</volume><issue>19</issue><spage>2171</spage><epage>2178</epage><pages>2171-2178</pages><issn>0950-0340</issn><eissn>1362-3044</eissn><abstract>We report a link (or optical analogue) between the relativistic Thomas rotation angle effect found in the special theory of relativity (STR), and the phase response of an all-pass filter (APF), one of the building blocks of the rapidly evolving field of photonic integrated circuits. This link opens up the possibility of investigating STR phenomena in a 'laboratory-on-a-chip' setting. The Thomas effect is a spatial rotation of the reference frame due to Einstein's velocity addition law of two successive velocities travelling in non-collinear directions. On the other hand, the APF is implemented with a microring resonator device with one waveguide bus. The analogue is established by associating two parameters. First, the transmission coupling coefficient τ of the APF is made to equal with the product of the two relativistic normalized velocities V
1
and V
2
(τ = V
1
V
2
), where the normalized velocities V
1
= tanh [β
1
/2] and V
2
= tanh [β
2
/2] with β
1
(=tanh
−1
(v
1
/c)) and β
2
(=tanh
−1
(v
2
/c)) being the rapidity values associated with the standard normalized speed. Second, the single-pass phase shift φ (or equivalently the phase detuning, Δφ or wavelength detuning, Δλ) parameter of the APF is related to the so-called generating angle θ of the two non-collinear relativistic velocities V
1
and V
2
. We also introduce an additional photonic circuit to convert this phase-encoded Thomas angle into intensity for direct measurement. Lastly, other important and broader consequences of this link are briefly discussed.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/09500340.2018.1502826</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-0340 |
ispartof | Journal of modern optics, 2018-11, Vol.65 (19), p.2171-2178 |
issn | 0950-0340 1362-3044 |
language | eng |
recordid | cdi_crossref_primary_10_1080_09500340_2018_1502826 |
source | Taylor and Francis Science and Technology Collection |
subjects | all-pass filter (APF) Coding Coupling coefficients Integrated circuits microring resonator (MRR) Parameters Photonic integrated circuits Photonics Relativism Relativistic effects Relativistic velocity Relativity Rotation special relativity Theory of relativity Thomas effect Velocity Wigner angle |
title | Optical analogue between relativistic Thomas effect in special relativity and phase response of the photonic integrated circuits-based all-pass filter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20analogue%20between%20relativistic%20Thomas%20effect%20in%20special%20relativity%20and%20phase%20response%20of%20the%20photonic%20integrated%20circuits-based%20all-pass%20filter&rft.jtitle=Journal%20of%20modern%20optics&rft.au=Dingel,%20Benjamin%20B.&rft.date=2018-11-11&rft.volume=65&rft.issue=19&rft.spage=2171&rft.epage=2178&rft.pages=2171-2178&rft.issn=0950-0340&rft.eissn=1362-3044&rft_id=info:doi/10.1080/09500340.2018.1502826&rft_dat=%3Cproquest_cross%3E2091197976%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-8af02cccdca7c22834ee62cf0d4a2e3d1039b475a4a6e0b0829b28bd5fa484a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091197976&rft_id=info:pmid/&rfr_iscdi=true |