Loading…

Special relativity-on-a-chip: impact of optical loss in the performance of an optical analogue of Thomas Effect

We investigate the effect of the unavoidable optical loss on the recently reported optical analogue of the relativistic Thomas Effect which uses a photonic chip-based lossless All-Pass Filter (APF) circuit [J. of Mod. Optics 65.19 (2018): 2171-2178]. When the APF has loss, both its phase and amplitu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of modern optics 2019-09, Vol.66 (16), p.1701-1710
Main Authors: Dingel, Benjamin B., Chua, Annelle R., Buenaventura, Aria, Calgo, Clyde J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the effect of the unavoidable optical loss on the recently reported optical analogue of the relativistic Thomas Effect which uses a photonic chip-based lossless All-Pass Filter (APF) circuit [J. of Mod. Optics 65.19 (2018): 2171-2178]. When the APF has loss, both its phase and amplitude responses are altered. This impacts the accuracy and operating range of the APF-based Thomas Effect analogue. To evaluate its impact on the phase output, we carry out a systematic evaluation of the phase response of the APF to explore when this Thomas Effect analogue breaks down. A lossy APF produces three dissimilar phase responses and varying dip in the amplitude response depending on the relative values of the coupling coefficient and the loss parameter. Numerical and analytical results show that APF must (i) be operated at an Over-Coupling (OC) condition (ii) with a loss parameter α ≥ 0.95 in order to have less than 1% phase error with the widest possible band coverage.
ISSN:0950-0340
1362-3044
DOI:10.1080/09500340.2019.1660427