Loading…

Quantitative proteomic analysis of the effects of melatonin treatment for mice suffered from small intestinal damage induced by γ-ray radiation

Intestinal damage induced by radiation exposure is a major clinic concern of radiotherapy for patients with abdominal or pelvic tumor. Melatonin (N-acetyl-5-methoxytryptamine) is likely be an ideal radioprotector to protect individuals from radiation exposure. The study aimed to define the role of m...

Full description

Saved in:
Bibliographic Details
Published in:International journal of radiation biology 2021-09, Vol.97 (9), p.1206-1216
Main Authors: Wang, Qin, Wang, Yan, Du, Liqing, Xu, Chang, Liu, Yang, Liu, Qiang, Fan, Saijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intestinal damage induced by radiation exposure is a major clinic concern of radiotherapy for patients with abdominal or pelvic tumor. Melatonin (N-acetyl-5-methoxytryptamine) is likely be an ideal radioprotector to protect individuals from radiation exposure. The study aimed to define the role of melatonin in small intestinal damage caused by abdominal irradiation (ABI). 30-day survival rate and pathological histology of the intestines from melatonin-treated mice after 13 Gy ABI exposure was first detected. Next, quantitative proteomics analysis of the small intestines tissue was examined and GO term and KEGG pathways analysis were performed. Melatonin treatment before ABI exposure significantly increased 30-day survival rate to 83% and ameliorated damage to the intestinal epithelial cells. Melatonin significantly altered the proteins profile of the small intestines following irradiation. For the irradiated mice treated with melatonin in comparison with the irradiated mice, the enriched GO terms were mainly involved in defense response to other organism (BP, GO: 0098542), response to other organism (BP, GO: 0051707), anion transmembrane transporter activity (MF, GO: 0008509), and secondary active transmembrane transporter activity (MF, GO: 0015291). In the process of antioxidant activity (MF, GO: 0016209), melatonin treatment prior to radiation exhibited high protein levels of Sod3 and Gpx3. The markedly KEGG pathways for melatonin treatment prior to radiation mainly included protein digestion and absorption (ko 04974) and mineral absorption (ko 04978). p53 signaling pathway and DNA repair pathways were enriched in melatonin treated mice. The amount of radiation-induced DNA damage and the cell apoptosis of the small intestines was decreased in the melatonin-treated mice. Melatonin may protect small intestines from radiation damage through increasing DNA repair and decreasing cell apoptosis of the small intestines. Our data provided perspective for the study of melatonin in mitigating ABI-caused intestinal damage.
ISSN:0955-3002
1362-3095
1362-3095
DOI:10.1080/09553002.2021.1956006