Loading…

Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling

Forward osmosis (FO) has received widespread recognition in the past decade due to its potential low energy production of water. This study presents a new model analysis for predicting the water flux in FO systems when inorganic-based draw solutions are used under variable experimental conditions fo...

Full description

Saved in:
Bibliographic Details
Published in:Environmental technology 2020-08, Vol.41 (19), p.2533-2545
Main Authors: Khraisheh, M., Dawas, N., Nasser, M.S., Al-Marri, M.J., Hussien, Muataz A., Adham, S., McKay, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243
cites cdi_FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243
container_end_page 2545
container_issue 19
container_start_page 2533
container_title Environmental technology
container_volume 41
creator Khraisheh, M.
Dawas, N.
Nasser, M.S.
Al-Marri, M.J.
Hussien, Muataz A.
Adham, S.
McKay, G.
description Forward osmosis (FO) has received widespread recognition in the past decade due to its potential low energy production of water. This study presents a new model analysis for predicting the water flux in FO systems when inorganic-based draw solutions are used under variable experimental conditions for using a laboratory scale cross-flow single cell unit. The new model accounts for the adverse impact of concentration polarization (both ICP and ECP) incorporating the water activity by Pitzer to calculate the bulk osmotic pressures. Using the water activity provides a better correlation of experimental data than the classical van't Hoff equation. The nonlinear model also gave a better estimate for the structural parameter factor (S) of the membrane in its solution. Furthermore, the temperature and concentration of both the draw and feed solutions played a significant role in increasing the water flux, which could be interpreted in terms of the mass transfer coefficient representing ECP; a factor sensitive to the hydraulics of the system. The model provides greatly improved correlations for the experimental water fluxes.
doi_str_mv 10.1080/09593330.2019.1575476
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_09593330_2019_1575476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179443505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMobk7_BKXgxUvnl19tc1OGv2AwQQVvoU1TzWibLWkZ8683ZdODBw8hhzzvl_d7EDrHMMWQwTUILiilMCWAxRTzlLM0OUBjzFIRsyx9P0TjgYkHaIROvF8CkIxn4hiNKCQZZsDH6GXhG9sZFa2c9r53OtK-M03eGdtGvTftR9R96ujZdF_aRXrd714q64azyV0Z2TDBGx81ttR1HRKn6KjKa6_P9vcEvd3fvc4e4_ni4Wl2O48VY7iLC4BQg1LNC5oTVjCc4lLoIqkwYKIAVKJFCpUSZabDdiwDWnKCeaKqrCKMTtDVbu7K2XUfesvGeBU65K22vZcEp4IxyoEH9PIPurS9a0M7SRjBhEACJFB8RylnvXe6kisXXLitxCAH6_LHuhysy731kLvYT--LRpe_qR_NAbjZAaYN1pp8Y11dyi7f1tZVLm-V8ZL-_8c3rG6Qlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421220602</pqid></control><display><type>article</type><title>Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling</title><source>Taylor and Francis Science and Technology Collection</source><creator>Khraisheh, M. ; Dawas, N. ; Nasser, M.S. ; Al-Marri, M.J. ; Hussien, Muataz A. ; Adham, S. ; McKay, G.</creator><creatorcontrib>Khraisheh, M. ; Dawas, N. ; Nasser, M.S. ; Al-Marri, M.J. ; Hussien, Muataz A. ; Adham, S. ; McKay, G.</creatorcontrib><description>Forward osmosis (FO) has received widespread recognition in the past decade due to its potential low energy production of water. This study presents a new model analysis for predicting the water flux in FO systems when inorganic-based draw solutions are used under variable experimental conditions for using a laboratory scale cross-flow single cell unit. The new model accounts for the adverse impact of concentration polarization (both ICP and ECP) incorporating the water activity by Pitzer to calculate the bulk osmotic pressures. Using the water activity provides a better correlation of experimental data than the classical van't Hoff equation. The nonlinear model also gave a better estimate for the structural parameter factor (S) of the membrane in its solution. Furthermore, the temperature and concentration of both the draw and feed solutions played a significant role in increasing the water flux, which could be interpreted in terms of the mass transfer coefficient representing ECP; a factor sensitive to the hydraulics of the system. The model provides greatly improved correlations for the experimental water fluxes.</description><identifier>ISSN: 0959-3330</identifier><identifier>EISSN: 1479-487X</identifier><identifier>DOI: 10.1080/09593330.2019.1575476</identifier><identifier>PMID: 30681405</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Computational fluid dynamics ; Cross flow ; draw solution ; Fluid flow ; Fluxes ; Forward osmosis ; Hydraulics ; Mass transfer ; membrane separation ; Osmosis ; Osmotic pressure ; Parameter estimation ; Water activity ; water flux modelling</subject><ispartof>Environmental technology, 2020-08, Vol.41 (19), p.2533-2545</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243</citedby><cites>FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243</cites><orcidid>0000-0002-7646-558X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30681405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khraisheh, M.</creatorcontrib><creatorcontrib>Dawas, N.</creatorcontrib><creatorcontrib>Nasser, M.S.</creatorcontrib><creatorcontrib>Al-Marri, M.J.</creatorcontrib><creatorcontrib>Hussien, Muataz A.</creatorcontrib><creatorcontrib>Adham, S.</creatorcontrib><creatorcontrib>McKay, G.</creatorcontrib><title>Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling</title><title>Environmental technology</title><addtitle>Environ Technol</addtitle><description>Forward osmosis (FO) has received widespread recognition in the past decade due to its potential low energy production of water. This study presents a new model analysis for predicting the water flux in FO systems when inorganic-based draw solutions are used under variable experimental conditions for using a laboratory scale cross-flow single cell unit. The new model accounts for the adverse impact of concentration polarization (both ICP and ECP) incorporating the water activity by Pitzer to calculate the bulk osmotic pressures. Using the water activity provides a better correlation of experimental data than the classical van't Hoff equation. The nonlinear model also gave a better estimate for the structural parameter factor (S) of the membrane in its solution. Furthermore, the temperature and concentration of both the draw and feed solutions played a significant role in increasing the water flux, which could be interpreted in terms of the mass transfer coefficient representing ECP; a factor sensitive to the hydraulics of the system. The model provides greatly improved correlations for the experimental water fluxes.</description><subject>Computational fluid dynamics</subject><subject>Cross flow</subject><subject>draw solution</subject><subject>Fluid flow</subject><subject>Fluxes</subject><subject>Forward osmosis</subject><subject>Hydraulics</subject><subject>Mass transfer</subject><subject>membrane separation</subject><subject>Osmosis</subject><subject>Osmotic pressure</subject><subject>Parameter estimation</subject><subject>Water activity</subject><subject>water flux modelling</subject><issn>0959-3330</issn><issn>1479-487X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kM9LwzAYhoMobk7_BKXgxUvnl19tc1OGv2AwQQVvoU1TzWibLWkZ8683ZdODBw8hhzzvl_d7EDrHMMWQwTUILiilMCWAxRTzlLM0OUBjzFIRsyx9P0TjgYkHaIROvF8CkIxn4hiNKCQZZsDH6GXhG9sZFa2c9r53OtK-M03eGdtGvTftR9R96ujZdF_aRXrd714q64azyV0Z2TDBGx81ttR1HRKn6KjKa6_P9vcEvd3fvc4e4_ni4Wl2O48VY7iLC4BQg1LNC5oTVjCc4lLoIqkwYKIAVKJFCpUSZabDdiwDWnKCeaKqrCKMTtDVbu7K2XUfesvGeBU65K22vZcEp4IxyoEH9PIPurS9a0M7SRjBhEACJFB8RylnvXe6kisXXLitxCAH6_LHuhysy731kLvYT--LRpe_qR_NAbjZAaYN1pp8Y11dyi7f1tZVLm-V8ZL-_8c3rG6Qlg</recordid><startdate>20200823</startdate><enddate>20200823</enddate><creator>Khraisheh, M.</creator><creator>Dawas, N.</creator><creator>Nasser, M.S.</creator><creator>Al-Marri, M.J.</creator><creator>Hussien, Muataz A.</creator><creator>Adham, S.</creator><creator>McKay, G.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7646-558X</orcidid></search><sort><creationdate>20200823</creationdate><title>Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling</title><author>Khraisheh, M. ; Dawas, N. ; Nasser, M.S. ; Al-Marri, M.J. ; Hussien, Muataz A. ; Adham, S. ; McKay, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Cross flow</topic><topic>draw solution</topic><topic>Fluid flow</topic><topic>Fluxes</topic><topic>Forward osmosis</topic><topic>Hydraulics</topic><topic>Mass transfer</topic><topic>membrane separation</topic><topic>Osmosis</topic><topic>Osmotic pressure</topic><topic>Parameter estimation</topic><topic>Water activity</topic><topic>water flux modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khraisheh, M.</creatorcontrib><creatorcontrib>Dawas, N.</creatorcontrib><creatorcontrib>Nasser, M.S.</creatorcontrib><creatorcontrib>Al-Marri, M.J.</creatorcontrib><creatorcontrib>Hussien, Muataz A.</creatorcontrib><creatorcontrib>Adham, S.</creatorcontrib><creatorcontrib>McKay, G.</creatorcontrib><collection>Taylor &amp; Francis Open Access(OpenAccess)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khraisheh, M.</au><au>Dawas, N.</au><au>Nasser, M.S.</au><au>Al-Marri, M.J.</au><au>Hussien, Muataz A.</au><au>Adham, S.</au><au>McKay, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling</atitle><jtitle>Environmental technology</jtitle><addtitle>Environ Technol</addtitle><date>2020-08-23</date><risdate>2020</risdate><volume>41</volume><issue>19</issue><spage>2533</spage><epage>2545</epage><pages>2533-2545</pages><issn>0959-3330</issn><eissn>1479-487X</eissn><abstract>Forward osmosis (FO) has received widespread recognition in the past decade due to its potential low energy production of water. This study presents a new model analysis for predicting the water flux in FO systems when inorganic-based draw solutions are used under variable experimental conditions for using a laboratory scale cross-flow single cell unit. The new model accounts for the adverse impact of concentration polarization (both ICP and ECP) incorporating the water activity by Pitzer to calculate the bulk osmotic pressures. Using the water activity provides a better correlation of experimental data than the classical van't Hoff equation. The nonlinear model also gave a better estimate for the structural parameter factor (S) of the membrane in its solution. Furthermore, the temperature and concentration of both the draw and feed solutions played a significant role in increasing the water flux, which could be interpreted in terms of the mass transfer coefficient representing ECP; a factor sensitive to the hydraulics of the system. The model provides greatly improved correlations for the experimental water fluxes.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>30681405</pmid><doi>10.1080/09593330.2019.1575476</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7646-558X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0959-3330
ispartof Environmental technology, 2020-08, Vol.41 (19), p.2533-2545
issn 0959-3330
1479-487X
language eng
recordid cdi_crossref_primary_10_1080_09593330_2019_1575476
source Taylor and Francis Science and Technology Collection
subjects Computational fluid dynamics
Cross flow
draw solution
Fluid flow
Fluxes
Forward osmosis
Hydraulics
Mass transfer
membrane separation
Osmosis
Osmotic pressure
Parameter estimation
Water activity
water flux modelling
title Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osmotic%20pressure%20estimation%20using%20the%20Pitzer%20equation%20for%20forward%20osmosis%20modelling&rft.jtitle=Environmental%20technology&rft.au=Khraisheh,%20M.&rft.date=2020-08-23&rft.volume=41&rft.issue=19&rft.spage=2533&rft.epage=2545&rft.pages=2533-2545&rft.issn=0959-3330&rft.eissn=1479-487X&rft_id=info:doi/10.1080/09593330.2019.1575476&rft_dat=%3Cproquest_cross%3E2179443505%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421220602&rft_id=info:pmid/30681405&rfr_iscdi=true