Loading…
Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling
Forward osmosis (FO) has received widespread recognition in the past decade due to its potential low energy production of water. This study presents a new model analysis for predicting the water flux in FO systems when inorganic-based draw solutions are used under variable experimental conditions fo...
Saved in:
Published in: | Environmental technology 2020-08, Vol.41 (19), p.2533-2545 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243 |
container_end_page | 2545 |
container_issue | 19 |
container_start_page | 2533 |
container_title | Environmental technology |
container_volume | 41 |
creator | Khraisheh, M. Dawas, N. Nasser, M.S. Al-Marri, M.J. Hussien, Muataz A. Adham, S. McKay, G. |
description | Forward osmosis (FO) has received widespread recognition in the past decade due to its potential low energy production of water. This study presents a new model analysis for predicting the water flux in FO systems when inorganic-based draw solutions are used under variable experimental conditions for using a laboratory scale cross-flow single cell unit. The new model accounts for the adverse impact of concentration polarization (both ICP and ECP) incorporating the water activity by Pitzer to calculate the bulk osmotic pressures. Using the water activity provides a better correlation of experimental data than the classical van't Hoff equation. The nonlinear model also gave a better estimate for the structural parameter factor (S) of the membrane in its solution. Furthermore, the temperature and concentration of both the draw and feed solutions played a significant role in increasing the water flux, which could be interpreted in terms of the mass transfer coefficient representing ECP; a factor sensitive to the hydraulics of the system. The model provides greatly improved correlations for the experimental water fluxes. |
doi_str_mv | 10.1080/09593330.2019.1575476 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_09593330_2019_1575476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179443505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMobk7_BKXgxUvnl19tc1OGv2AwQQVvoU1TzWibLWkZ8683ZdODBw8hhzzvl_d7EDrHMMWQwTUILiilMCWAxRTzlLM0OUBjzFIRsyx9P0TjgYkHaIROvF8CkIxn4hiNKCQZZsDH6GXhG9sZFa2c9r53OtK-M03eGdtGvTftR9R96ujZdF_aRXrd714q64azyV0Z2TDBGx81ttR1HRKn6KjKa6_P9vcEvd3fvc4e4_ni4Wl2O48VY7iLC4BQg1LNC5oTVjCc4lLoIqkwYKIAVKJFCpUSZabDdiwDWnKCeaKqrCKMTtDVbu7K2XUfesvGeBU65K22vZcEp4IxyoEH9PIPurS9a0M7SRjBhEACJFB8RylnvXe6kisXXLitxCAH6_LHuhysy731kLvYT--LRpe_qR_NAbjZAaYN1pp8Y11dyi7f1tZVLm-V8ZL-_8c3rG6Qlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421220602</pqid></control><display><type>article</type><title>Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling</title><source>Taylor and Francis Science and Technology Collection</source><creator>Khraisheh, M. ; Dawas, N. ; Nasser, M.S. ; Al-Marri, M.J. ; Hussien, Muataz A. ; Adham, S. ; McKay, G.</creator><creatorcontrib>Khraisheh, M. ; Dawas, N. ; Nasser, M.S. ; Al-Marri, M.J. ; Hussien, Muataz A. ; Adham, S. ; McKay, G.</creatorcontrib><description>Forward osmosis (FO) has received widespread recognition in the past decade due to its potential low energy production of water. This study presents a new model analysis for predicting the water flux in FO systems when inorganic-based draw solutions are used under variable experimental conditions for using a laboratory scale cross-flow single cell unit. The new model accounts for the adverse impact of concentration polarization (both ICP and ECP) incorporating the water activity by Pitzer to calculate the bulk osmotic pressures. Using the water activity provides a better correlation of experimental data than the classical van't Hoff equation. The nonlinear model also gave a better estimate for the structural parameter factor (S) of the membrane in its solution. Furthermore, the temperature and concentration of both the draw and feed solutions played a significant role in increasing the water flux, which could be interpreted in terms of the mass transfer coefficient representing ECP; a factor sensitive to the hydraulics of the system. The model provides greatly improved correlations for the experimental water fluxes.</description><identifier>ISSN: 0959-3330</identifier><identifier>EISSN: 1479-487X</identifier><identifier>DOI: 10.1080/09593330.2019.1575476</identifier><identifier>PMID: 30681405</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Computational fluid dynamics ; Cross flow ; draw solution ; Fluid flow ; Fluxes ; Forward osmosis ; Hydraulics ; Mass transfer ; membrane separation ; Osmosis ; Osmotic pressure ; Parameter estimation ; Water activity ; water flux modelling</subject><ispartof>Environmental technology, 2020-08, Vol.41 (19), p.2533-2545</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243</citedby><cites>FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243</cites><orcidid>0000-0002-7646-558X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30681405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khraisheh, M.</creatorcontrib><creatorcontrib>Dawas, N.</creatorcontrib><creatorcontrib>Nasser, M.S.</creatorcontrib><creatorcontrib>Al-Marri, M.J.</creatorcontrib><creatorcontrib>Hussien, Muataz A.</creatorcontrib><creatorcontrib>Adham, S.</creatorcontrib><creatorcontrib>McKay, G.</creatorcontrib><title>Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling</title><title>Environmental technology</title><addtitle>Environ Technol</addtitle><description>Forward osmosis (FO) has received widespread recognition in the past decade due to its potential low energy production of water. This study presents a new model analysis for predicting the water flux in FO systems when inorganic-based draw solutions are used under variable experimental conditions for using a laboratory scale cross-flow single cell unit. The new model accounts for the adverse impact of concentration polarization (both ICP and ECP) incorporating the water activity by Pitzer to calculate the bulk osmotic pressures. Using the water activity provides a better correlation of experimental data than the classical van't Hoff equation. The nonlinear model also gave a better estimate for the structural parameter factor (S) of the membrane in its solution. Furthermore, the temperature and concentration of both the draw and feed solutions played a significant role in increasing the water flux, which could be interpreted in terms of the mass transfer coefficient representing ECP; a factor sensitive to the hydraulics of the system. The model provides greatly improved correlations for the experimental water fluxes.</description><subject>Computational fluid dynamics</subject><subject>Cross flow</subject><subject>draw solution</subject><subject>Fluid flow</subject><subject>Fluxes</subject><subject>Forward osmosis</subject><subject>Hydraulics</subject><subject>Mass transfer</subject><subject>membrane separation</subject><subject>Osmosis</subject><subject>Osmotic pressure</subject><subject>Parameter estimation</subject><subject>Water activity</subject><subject>water flux modelling</subject><issn>0959-3330</issn><issn>1479-487X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kM9LwzAYhoMobk7_BKXgxUvnl19tc1OGv2AwQQVvoU1TzWibLWkZ8683ZdODBw8hhzzvl_d7EDrHMMWQwTUILiilMCWAxRTzlLM0OUBjzFIRsyx9P0TjgYkHaIROvF8CkIxn4hiNKCQZZsDH6GXhG9sZFa2c9r53OtK-M03eGdtGvTftR9R96ujZdF_aRXrd714q64azyV0Z2TDBGx81ttR1HRKn6KjKa6_P9vcEvd3fvc4e4_ni4Wl2O48VY7iLC4BQg1LNC5oTVjCc4lLoIqkwYKIAVKJFCpUSZabDdiwDWnKCeaKqrCKMTtDVbu7K2XUfesvGeBU65K22vZcEp4IxyoEH9PIPurS9a0M7SRjBhEACJFB8RylnvXe6kisXXLitxCAH6_LHuhysy731kLvYT--LRpe_qR_NAbjZAaYN1pp8Y11dyi7f1tZVLm-V8ZL-_8c3rG6Qlg</recordid><startdate>20200823</startdate><enddate>20200823</enddate><creator>Khraisheh, M.</creator><creator>Dawas, N.</creator><creator>Nasser, M.S.</creator><creator>Al-Marri, M.J.</creator><creator>Hussien, Muataz A.</creator><creator>Adham, S.</creator><creator>McKay, G.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7646-558X</orcidid></search><sort><creationdate>20200823</creationdate><title>Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling</title><author>Khraisheh, M. ; Dawas, N. ; Nasser, M.S. ; Al-Marri, M.J. ; Hussien, Muataz A. ; Adham, S. ; McKay, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Cross flow</topic><topic>draw solution</topic><topic>Fluid flow</topic><topic>Fluxes</topic><topic>Forward osmosis</topic><topic>Hydraulics</topic><topic>Mass transfer</topic><topic>membrane separation</topic><topic>Osmosis</topic><topic>Osmotic pressure</topic><topic>Parameter estimation</topic><topic>Water activity</topic><topic>water flux modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khraisheh, M.</creatorcontrib><creatorcontrib>Dawas, N.</creatorcontrib><creatorcontrib>Nasser, M.S.</creatorcontrib><creatorcontrib>Al-Marri, M.J.</creatorcontrib><creatorcontrib>Hussien, Muataz A.</creatorcontrib><creatorcontrib>Adham, S.</creatorcontrib><creatorcontrib>McKay, G.</creatorcontrib><collection>Taylor & Francis Open Access(OpenAccess)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khraisheh, M.</au><au>Dawas, N.</au><au>Nasser, M.S.</au><au>Al-Marri, M.J.</au><au>Hussien, Muataz A.</au><au>Adham, S.</au><au>McKay, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling</atitle><jtitle>Environmental technology</jtitle><addtitle>Environ Technol</addtitle><date>2020-08-23</date><risdate>2020</risdate><volume>41</volume><issue>19</issue><spage>2533</spage><epage>2545</epage><pages>2533-2545</pages><issn>0959-3330</issn><eissn>1479-487X</eissn><abstract>Forward osmosis (FO) has received widespread recognition in the past decade due to its potential low energy production of water. This study presents a new model analysis for predicting the water flux in FO systems when inorganic-based draw solutions are used under variable experimental conditions for using a laboratory scale cross-flow single cell unit. The new model accounts for the adverse impact of concentration polarization (both ICP and ECP) incorporating the water activity by Pitzer to calculate the bulk osmotic pressures. Using the water activity provides a better correlation of experimental data than the classical van't Hoff equation. The nonlinear model also gave a better estimate for the structural parameter factor (S) of the membrane in its solution. Furthermore, the temperature and concentration of both the draw and feed solutions played a significant role in increasing the water flux, which could be interpreted in terms of the mass transfer coefficient representing ECP; a factor sensitive to the hydraulics of the system. The model provides greatly improved correlations for the experimental water fluxes.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>30681405</pmid><doi>10.1080/09593330.2019.1575476</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7646-558X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-3330 |
ispartof | Environmental technology, 2020-08, Vol.41 (19), p.2533-2545 |
issn | 0959-3330 1479-487X |
language | eng |
recordid | cdi_crossref_primary_10_1080_09593330_2019_1575476 |
source | Taylor and Francis Science and Technology Collection |
subjects | Computational fluid dynamics Cross flow draw solution Fluid flow Fluxes Forward osmosis Hydraulics Mass transfer membrane separation Osmosis Osmotic pressure Parameter estimation Water activity water flux modelling |
title | Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osmotic%20pressure%20estimation%20using%20the%20Pitzer%20equation%20for%20forward%20osmosis%20modelling&rft.jtitle=Environmental%20technology&rft.au=Khraisheh,%20M.&rft.date=2020-08-23&rft.volume=41&rft.issue=19&rft.spage=2533&rft.epage=2545&rft.pages=2533-2545&rft.issn=0959-3330&rft.eissn=1479-487X&rft_id=info:doi/10.1080/09593330.2019.1575476&rft_dat=%3Cproquest_cross%3E2179443505%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-b0006833e5b3a24b4171d9eb6f1012c00c6e970fc9d8e5474803d52156cf8f243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421220602&rft_id=info:pmid/30681405&rfr_iscdi=true |