Loading…

A novel magnetic adsorbent from activated carbon fiber and iron oxide nanoparticles for 2,4-D removal from aqueous medium

Carbonaceous materials have been widely applied as adsorbents, but there are some factors that affect their efficiency. In this context, advances in nanotechnology provide new and more efficient methodologies for water treatment. This study evaluated the efficiency of a novel carbon-based adsorbent...

Full description

Saved in:
Bibliographic Details
Published in:Environmental technology 2023-12, Vol.44 (27), p.4219-4237
Main Authors: Demiti, Gabriela Maria Matos, Barbosa de Andrade, Murilo, Marcuzzo, Jossano Saldanha, Vieira, Marcelo Fernandes, Bergamasco, Rosângela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbonaceous materials have been widely applied as adsorbents, but there are some factors that affect their efficiency. In this context, advances in nanotechnology provide new and more efficient methodologies for water treatment. This study evaluated the efficiency of a novel carbon-based adsorbent developed from Brazilian polyacrylonitrile textile fiber and functionalized with iron oxide magnetic nanoparticles for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from the aqueous medium. The synthesized adsorbent (ACF-Fe 3 O 4 ) was characterized by FTIR, XRD, VSM, Zeta potential, SEM, EDX, and TEM. The characterization techniques showed that the adsorbent has peaks characteristic of its precursors and superparamagnetic characteristics, confirming the efficiency of the synthesis method. The adsorption tests evaluated the influence of adsorbent dosage, pH of the contaminant solution, contact time and temperature on the removal of 2,4-D. The experimental data were better adjusted by the pseudo-second order kinetic model and by the Langmuir isothermal model. The thermodynamic parameters revealed that the process is exothermic, spontaneous and thermodynamically favorable. Under the best experimental conditions, the maximum adsorption capacity obtained was 51.10 mg g −1 with an adsorbent concentration of 0.33 g L −1 , natural pH of the solution, temperature of 288 K at the equilibrium time of six hours. Adsorbent reusage was studied in four desorption cycles. The adsorption mechanism can be explained through π-π bonds, hydrogen bonds and electrostatic interactions. The prepared material presented high-efficiency adsorption capacity of 2,4-D compared to other carbonaceous materials present in the literature, demonstrating its viability for the removal of this contaminant from the aqueous medium.
ISSN:0959-3330
1479-487X
DOI:10.1080/09593330.2022.2086825