Loading…

Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps

This study aims to investigate the changes in landscape metrics with varying spatial resolution from Sentinel-2 (10 m), SPOT 7 (1.5 m), Pleaides (0.5 m), and Worldview-4 (0.3 m) images. We implemented Geographic Object-Based Image Analysis (GEOBIA) techniques to all images to identify 21 land use an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental planning and management 2024-08, Vol.67 (10), p.2281-2302
Main Authors: Varol, Beril, Szabo, Szilard, Topaloğlu, Raziye Hale, Aksu, Gül Aslı, Sertel, Elif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013
cites cdi_FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013
container_end_page 2302
container_issue 10
container_start_page 2281
container_title Journal of environmental planning and management
container_volume 67
creator Varol, Beril
Szabo, Szilard
Topaloğlu, Raziye Hale
Aksu, Gül Aslı
Sertel, Elif
description This study aims to investigate the changes in landscape metrics with varying spatial resolution from Sentinel-2 (10 m), SPOT 7 (1.5 m), Pleaides (0.5 m), and Worldview-4 (0.3 m) images. We implemented Geographic Object-Based Image Analysis (GEOBIA) techniques to all images to identify 21 land use and land cover (LULC) classes, which were then used to calculate several landscape metrics. We performed the Welch hypothesis testing on the class-level landscape metrics and applied Standardized Principal Component Analysis (PCA) with the correlation matrix to reveal the multivariate pattern of landscape metrics. Our results showed that 10 m and even the 1.5 m spatial resolutions cannot guarantee the identification of all LULC classes, and class areas change with varying spatial resolution (sometimes with 200% differences). Sentinel-2 images have some limitations, specifically from the landscape ecological planning perspective; on the other hand, Pleaides and Worldview-4 seem good alternatives to understand habitats' viability and landscape isolation/connectivity.
doi_str_mv 10.1080/09640568.2023.2185507
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_09640568_2023_2185507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072924830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwCEiWOKes7TiJb1QVf1IkLvRsuY5TXCVx8Saq-vYktFy57B52ZlbzEXLPYMGggEdQWQoyKxYcuFhwVkgJ-QWZMZFBAlKqSzKbNMkkuiY3iDsAkIJlM7JddqY5okcaatp_OWoQg_Wm96GjG9cfnOuob83W0egwNMPvwXQVbcaB1uwdbV0fvUU6oO-2tB2a3ifoOgyRlutyRVuzx1tyVZsG3d15z8n65flz9ZaUH6_vq2WZWJGzPnHCyk294ayySnLrLM-cUEaChBRybhVYxVlW5JJZUMJAYVSd5hXksigqYGJOHk65-xi-B4e93oUhjh1RizFA8bQQMKrkSWVjQIyu1vs4loxHzUBPTPUfUz0x1Wemo-_p5PNdHWJrDiE2le7NsQmxjqazfnzzf8QP45R9xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072924830</pqid></control><display><type>article</type><title>Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Taylor &amp; Francis</source><source>PAIS Index</source><creator>Varol, Beril ; Szabo, Szilard ; Topaloğlu, Raziye Hale ; Aksu, Gül Aslı ; Sertel, Elif</creator><creatorcontrib>Varol, Beril ; Szabo, Szilard ; Topaloğlu, Raziye Hale ; Aksu, Gül Aslı ; Sertel, Elif</creatorcontrib><description>This study aims to investigate the changes in landscape metrics with varying spatial resolution from Sentinel-2 (10 m), SPOT 7 (1.5 m), Pleaides (0.5 m), and Worldview-4 (0.3 m) images. We implemented Geographic Object-Based Image Analysis (GEOBIA) techniques to all images to identify 21 land use and land cover (LULC) classes, which were then used to calculate several landscape metrics. We performed the Welch hypothesis testing on the class-level landscape metrics and applied Standardized Principal Component Analysis (PCA) with the correlation matrix to reveal the multivariate pattern of landscape metrics. Our results showed that 10 m and even the 1.5 m spatial resolutions cannot guarantee the identification of all LULC classes, and class areas change with varying spatial resolution (sometimes with 200% differences). Sentinel-2 images have some limitations, specifically from the landscape ecological planning perspective; on the other hand, Pleaides and Worldview-4 seem good alternatives to understand habitats' viability and landscape isolation/connectivity.</description><identifier>ISSN: 0964-0568</identifier><identifier>EISSN: 1360-0559</identifier><identifier>DOI: 10.1080/09640568.2023.2185507</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Correlation analysis ; GEOBIA ; Hypothesis testing ; Image analysis ; Image processing ; Image resolution ; Land cover ; Land use ; land use/land cover (LULC) mapping ; Landscape ; landscape pattern ; Principal components analysis ; Spatial discrimination ; Spatial resolution ; urban habitats ; Worldview</subject><ispartof>Journal of environmental planning and management, 2024-08, Vol.67 (10), p.2281-2302</ispartof><rights>2023 Newcastle University 2023</rights><rights>2023 Newcastle University</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013</citedby><cites>FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013</cites><orcidid>0000-0003-2382-3969 ; 0000-0003-4854-494X ; 0000-0002-6847-6182 ; 0000-0002-2670-7384 ; 0000-0001-9706-8068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27866,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Varol, Beril</creatorcontrib><creatorcontrib>Szabo, Szilard</creatorcontrib><creatorcontrib>Topaloğlu, Raziye Hale</creatorcontrib><creatorcontrib>Aksu, Gül Aslı</creatorcontrib><creatorcontrib>Sertel, Elif</creatorcontrib><title>Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps</title><title>Journal of environmental planning and management</title><description>This study aims to investigate the changes in landscape metrics with varying spatial resolution from Sentinel-2 (10 m), SPOT 7 (1.5 m), Pleaides (0.5 m), and Worldview-4 (0.3 m) images. We implemented Geographic Object-Based Image Analysis (GEOBIA) techniques to all images to identify 21 land use and land cover (LULC) classes, which were then used to calculate several landscape metrics. We performed the Welch hypothesis testing on the class-level landscape metrics and applied Standardized Principal Component Analysis (PCA) with the correlation matrix to reveal the multivariate pattern of landscape metrics. Our results showed that 10 m and even the 1.5 m spatial resolutions cannot guarantee the identification of all LULC classes, and class areas change with varying spatial resolution (sometimes with 200% differences). Sentinel-2 images have some limitations, specifically from the landscape ecological planning perspective; on the other hand, Pleaides and Worldview-4 seem good alternatives to understand habitats' viability and landscape isolation/connectivity.</description><subject>Correlation analysis</subject><subject>GEOBIA</subject><subject>Hypothesis testing</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Land cover</subject><subject>Land use</subject><subject>land use/land cover (LULC) mapping</subject><subject>Landscape</subject><subject>landscape pattern</subject><subject>Principal components analysis</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>urban habitats</subject><subject>Worldview</subject><issn>0964-0568</issn><issn>1360-0559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwCEiWOKes7TiJb1QVf1IkLvRsuY5TXCVx8Saq-vYktFy57B52ZlbzEXLPYMGggEdQWQoyKxYcuFhwVkgJ-QWZMZFBAlKqSzKbNMkkuiY3iDsAkIJlM7JddqY5okcaatp_OWoQg_Wm96GjG9cfnOuob83W0egwNMPvwXQVbcaB1uwdbV0fvUU6oO-2tB2a3ifoOgyRlutyRVuzx1tyVZsG3d15z8n65flz9ZaUH6_vq2WZWJGzPnHCyk294ayySnLrLM-cUEaChBRybhVYxVlW5JJZUMJAYVSd5hXksigqYGJOHk65-xi-B4e93oUhjh1RizFA8bQQMKrkSWVjQIyu1vs4loxHzUBPTPUfUz0x1Wemo-_p5PNdHWJrDiE2le7NsQmxjqazfnzzf8QP45R9xw</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Varol, Beril</creator><creator>Szabo, Szilard</creator><creator>Topaloğlu, Raziye Hale</creator><creator>Aksu, Gül Aslı</creator><creator>Sertel, Elif</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>7U7</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>FR3</scope><scope>JBE</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2382-3969</orcidid><orcidid>https://orcid.org/0000-0003-4854-494X</orcidid><orcidid>https://orcid.org/0000-0002-6847-6182</orcidid><orcidid>https://orcid.org/0000-0002-2670-7384</orcidid><orcidid>https://orcid.org/0000-0001-9706-8068</orcidid></search><sort><creationdate>20240823</creationdate><title>Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps</title><author>Varol, Beril ; Szabo, Szilard ; Topaloğlu, Raziye Hale ; Aksu, Gül Aslı ; Sertel, Elif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Correlation analysis</topic><topic>GEOBIA</topic><topic>Hypothesis testing</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Land cover</topic><topic>Land use</topic><topic>land use/land cover (LULC) mapping</topic><topic>Landscape</topic><topic>landscape pattern</topic><topic>Principal components analysis</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>urban habitats</topic><topic>Worldview</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varol, Beril</creatorcontrib><creatorcontrib>Szabo, Szilard</creatorcontrib><creatorcontrib>Topaloğlu, Raziye Hale</creatorcontrib><creatorcontrib>Aksu, Gül Aslı</creatorcontrib><creatorcontrib>Sertel, Elif</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>Toxicology Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of environmental planning and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varol, Beril</au><au>Szabo, Szilard</au><au>Topaloğlu, Raziye Hale</au><au>Aksu, Gül Aslı</au><au>Sertel, Elif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps</atitle><jtitle>Journal of environmental planning and management</jtitle><date>2024-08-23</date><risdate>2024</risdate><volume>67</volume><issue>10</issue><spage>2281</spage><epage>2302</epage><pages>2281-2302</pages><issn>0964-0568</issn><eissn>1360-0559</eissn><abstract>This study aims to investigate the changes in landscape metrics with varying spatial resolution from Sentinel-2 (10 m), SPOT 7 (1.5 m), Pleaides (0.5 m), and Worldview-4 (0.3 m) images. We implemented Geographic Object-Based Image Analysis (GEOBIA) techniques to all images to identify 21 land use and land cover (LULC) classes, which were then used to calculate several landscape metrics. We performed the Welch hypothesis testing on the class-level landscape metrics and applied Standardized Principal Component Analysis (PCA) with the correlation matrix to reveal the multivariate pattern of landscape metrics. Our results showed that 10 m and even the 1.5 m spatial resolutions cannot guarantee the identification of all LULC classes, and class areas change with varying spatial resolution (sometimes with 200% differences). Sentinel-2 images have some limitations, specifically from the landscape ecological planning perspective; on the other hand, Pleaides and Worldview-4 seem good alternatives to understand habitats' viability and landscape isolation/connectivity.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/09640568.2023.2185507</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2382-3969</orcidid><orcidid>https://orcid.org/0000-0003-4854-494X</orcidid><orcidid>https://orcid.org/0000-0002-6847-6182</orcidid><orcidid>https://orcid.org/0000-0002-2670-7384</orcidid><orcidid>https://orcid.org/0000-0001-9706-8068</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0964-0568
ispartof Journal of environmental planning and management, 2024-08, Vol.67 (10), p.2281-2302
issn 0964-0568
1360-0559
language eng
recordid cdi_crossref_primary_10_1080_09640568_2023_2185507
source International Bibliography of the Social Sciences (IBSS); Taylor & Francis; PAIS Index
subjects Correlation analysis
GEOBIA
Hypothesis testing
Image analysis
Image processing
Image resolution
Land cover
Land use
land use/land cover (LULC) mapping
Landscape
landscape pattern
Principal components analysis
Spatial discrimination
Spatial resolution
urban habitats
Worldview
title Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20association%20between%20image%20resolution%20and%20landscape%20metrics%20using%20multi-sensor%20LULC%20maps&rft.jtitle=Journal%20of%20environmental%20planning%20and%20management&rft.au=Varol,%20Beril&rft.date=2024-08-23&rft.volume=67&rft.issue=10&rft.spage=2281&rft.epage=2302&rft.pages=2281-2302&rft.issn=0964-0568&rft.eissn=1360-0559&rft_id=info:doi/10.1080/09640568.2023.2185507&rft_dat=%3Cproquest_cross%3E3072924830%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072924830&rft_id=info:pmid/&rfr_iscdi=true