Loading…
Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps
This study aims to investigate the changes in landscape metrics with varying spatial resolution from Sentinel-2 (10 m), SPOT 7 (1.5 m), Pleaides (0.5 m), and Worldview-4 (0.3 m) images. We implemented Geographic Object-Based Image Analysis (GEOBIA) techniques to all images to identify 21 land use an...
Saved in:
Published in: | Journal of environmental planning and management 2024-08, Vol.67 (10), p.2281-2302 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013 |
container_end_page | 2302 |
container_issue | 10 |
container_start_page | 2281 |
container_title | Journal of environmental planning and management |
container_volume | 67 |
creator | Varol, Beril Szabo, Szilard Topaloğlu, Raziye Hale Aksu, Gül Aslı Sertel, Elif |
description | This study aims to investigate the changes in landscape metrics with varying spatial resolution from Sentinel-2 (10 m), SPOT 7 (1.5 m), Pleaides (0.5 m), and Worldview-4 (0.3 m) images. We implemented Geographic Object-Based Image Analysis (GEOBIA) techniques to all images to identify 21 land use and land cover (LULC) classes, which were then used to calculate several landscape metrics. We performed the Welch hypothesis testing on the class-level landscape metrics and applied Standardized Principal Component Analysis (PCA) with the correlation matrix to reveal the multivariate pattern of landscape metrics. Our results showed that 10 m and even the 1.5 m spatial resolutions cannot guarantee the identification of all LULC classes, and class areas change with varying spatial resolution (sometimes with 200% differences). Sentinel-2 images have some limitations, specifically from the landscape ecological planning perspective; on the other hand, Pleaides and Worldview-4 seem good alternatives to understand habitats' viability and landscape isolation/connectivity. |
doi_str_mv | 10.1080/09640568.2023.2185507 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_09640568_2023_2185507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072924830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwCEiWOKes7TiJb1QVf1IkLvRsuY5TXCVx8Saq-vYktFy57B52ZlbzEXLPYMGggEdQWQoyKxYcuFhwVkgJ-QWZMZFBAlKqSzKbNMkkuiY3iDsAkIJlM7JddqY5okcaatp_OWoQg_Wm96GjG9cfnOuob83W0egwNMPvwXQVbcaB1uwdbV0fvUU6oO-2tB2a3ifoOgyRlutyRVuzx1tyVZsG3d15z8n65flz9ZaUH6_vq2WZWJGzPnHCyk294ayySnLrLM-cUEaChBRybhVYxVlW5JJZUMJAYVSd5hXksigqYGJOHk65-xi-B4e93oUhjh1RizFA8bQQMKrkSWVjQIyu1vs4loxHzUBPTPUfUz0x1Wemo-_p5PNdHWJrDiE2le7NsQmxjqazfnzzf8QP45R9xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072924830</pqid></control><display><type>article</type><title>Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Taylor & Francis</source><source>PAIS Index</source><creator>Varol, Beril ; Szabo, Szilard ; Topaloğlu, Raziye Hale ; Aksu, Gül Aslı ; Sertel, Elif</creator><creatorcontrib>Varol, Beril ; Szabo, Szilard ; Topaloğlu, Raziye Hale ; Aksu, Gül Aslı ; Sertel, Elif</creatorcontrib><description>This study aims to investigate the changes in landscape metrics with varying spatial resolution from Sentinel-2 (10 m), SPOT 7 (1.5 m), Pleaides (0.5 m), and Worldview-4 (0.3 m) images. We implemented Geographic Object-Based Image Analysis (GEOBIA) techniques to all images to identify 21 land use and land cover (LULC) classes, which were then used to calculate several landscape metrics. We performed the Welch hypothesis testing on the class-level landscape metrics and applied Standardized Principal Component Analysis (PCA) with the correlation matrix to reveal the multivariate pattern of landscape metrics. Our results showed that 10 m and even the 1.5 m spatial resolutions cannot guarantee the identification of all LULC classes, and class areas change with varying spatial resolution (sometimes with 200% differences). Sentinel-2 images have some limitations, specifically from the landscape ecological planning perspective; on the other hand, Pleaides and Worldview-4 seem good alternatives to understand habitats' viability and landscape isolation/connectivity.</description><identifier>ISSN: 0964-0568</identifier><identifier>EISSN: 1360-0559</identifier><identifier>DOI: 10.1080/09640568.2023.2185507</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Correlation analysis ; GEOBIA ; Hypothesis testing ; Image analysis ; Image processing ; Image resolution ; Land cover ; Land use ; land use/land cover (LULC) mapping ; Landscape ; landscape pattern ; Principal components analysis ; Spatial discrimination ; Spatial resolution ; urban habitats ; Worldview</subject><ispartof>Journal of environmental planning and management, 2024-08, Vol.67 (10), p.2281-2302</ispartof><rights>2023 Newcastle University 2023</rights><rights>2023 Newcastle University</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013</citedby><cites>FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013</cites><orcidid>0000-0003-2382-3969 ; 0000-0003-4854-494X ; 0000-0002-6847-6182 ; 0000-0002-2670-7384 ; 0000-0001-9706-8068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27866,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Varol, Beril</creatorcontrib><creatorcontrib>Szabo, Szilard</creatorcontrib><creatorcontrib>Topaloğlu, Raziye Hale</creatorcontrib><creatorcontrib>Aksu, Gül Aslı</creatorcontrib><creatorcontrib>Sertel, Elif</creatorcontrib><title>Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps</title><title>Journal of environmental planning and management</title><description>This study aims to investigate the changes in landscape metrics with varying spatial resolution from Sentinel-2 (10 m), SPOT 7 (1.5 m), Pleaides (0.5 m), and Worldview-4 (0.3 m) images. We implemented Geographic Object-Based Image Analysis (GEOBIA) techniques to all images to identify 21 land use and land cover (LULC) classes, which were then used to calculate several landscape metrics. We performed the Welch hypothesis testing on the class-level landscape metrics and applied Standardized Principal Component Analysis (PCA) with the correlation matrix to reveal the multivariate pattern of landscape metrics. Our results showed that 10 m and even the 1.5 m spatial resolutions cannot guarantee the identification of all LULC classes, and class areas change with varying spatial resolution (sometimes with 200% differences). Sentinel-2 images have some limitations, specifically from the landscape ecological planning perspective; on the other hand, Pleaides and Worldview-4 seem good alternatives to understand habitats' viability and landscape isolation/connectivity.</description><subject>Correlation analysis</subject><subject>GEOBIA</subject><subject>Hypothesis testing</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Land cover</subject><subject>Land use</subject><subject>land use/land cover (LULC) mapping</subject><subject>Landscape</subject><subject>landscape pattern</subject><subject>Principal components analysis</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>urban habitats</subject><subject>Worldview</subject><issn>0964-0568</issn><issn>1360-0559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwCEiWOKes7TiJb1QVf1IkLvRsuY5TXCVx8Saq-vYktFy57B52ZlbzEXLPYMGggEdQWQoyKxYcuFhwVkgJ-QWZMZFBAlKqSzKbNMkkuiY3iDsAkIJlM7JddqY5okcaatp_OWoQg_Wm96GjG9cfnOuob83W0egwNMPvwXQVbcaB1uwdbV0fvUU6oO-2tB2a3ifoOgyRlutyRVuzx1tyVZsG3d15z8n65flz9ZaUH6_vq2WZWJGzPnHCyk294ayySnLrLM-cUEaChBRybhVYxVlW5JJZUMJAYVSd5hXksigqYGJOHk65-xi-B4e93oUhjh1RizFA8bQQMKrkSWVjQIyu1vs4loxHzUBPTPUfUz0x1Wemo-_p5PNdHWJrDiE2le7NsQmxjqazfnzzf8QP45R9xw</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Varol, Beril</creator><creator>Szabo, Szilard</creator><creator>Topaloğlu, Raziye Hale</creator><creator>Aksu, Gül Aslı</creator><creator>Sertel, Elif</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>7U7</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>FR3</scope><scope>JBE</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2382-3969</orcidid><orcidid>https://orcid.org/0000-0003-4854-494X</orcidid><orcidid>https://orcid.org/0000-0002-6847-6182</orcidid><orcidid>https://orcid.org/0000-0002-2670-7384</orcidid><orcidid>https://orcid.org/0000-0001-9706-8068</orcidid></search><sort><creationdate>20240823</creationdate><title>Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps</title><author>Varol, Beril ; Szabo, Szilard ; Topaloğlu, Raziye Hale ; Aksu, Gül Aslı ; Sertel, Elif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Correlation analysis</topic><topic>GEOBIA</topic><topic>Hypothesis testing</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Land cover</topic><topic>Land use</topic><topic>land use/land cover (LULC) mapping</topic><topic>Landscape</topic><topic>landscape pattern</topic><topic>Principal components analysis</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>urban habitats</topic><topic>Worldview</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varol, Beril</creatorcontrib><creatorcontrib>Szabo, Szilard</creatorcontrib><creatorcontrib>Topaloğlu, Raziye Hale</creatorcontrib><creatorcontrib>Aksu, Gül Aslı</creatorcontrib><creatorcontrib>Sertel, Elif</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>Toxicology Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of environmental planning and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varol, Beril</au><au>Szabo, Szilard</au><au>Topaloğlu, Raziye Hale</au><au>Aksu, Gül Aslı</au><au>Sertel, Elif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps</atitle><jtitle>Journal of environmental planning and management</jtitle><date>2024-08-23</date><risdate>2024</risdate><volume>67</volume><issue>10</issue><spage>2281</spage><epage>2302</epage><pages>2281-2302</pages><issn>0964-0568</issn><eissn>1360-0559</eissn><abstract>This study aims to investigate the changes in landscape metrics with varying spatial resolution from Sentinel-2 (10 m), SPOT 7 (1.5 m), Pleaides (0.5 m), and Worldview-4 (0.3 m) images. We implemented Geographic Object-Based Image Analysis (GEOBIA) techniques to all images to identify 21 land use and land cover (LULC) classes, which were then used to calculate several landscape metrics. We performed the Welch hypothesis testing on the class-level landscape metrics and applied Standardized Principal Component Analysis (PCA) with the correlation matrix to reveal the multivariate pattern of landscape metrics. Our results showed that 10 m and even the 1.5 m spatial resolutions cannot guarantee the identification of all LULC classes, and class areas change with varying spatial resolution (sometimes with 200% differences). Sentinel-2 images have some limitations, specifically from the landscape ecological planning perspective; on the other hand, Pleaides and Worldview-4 seem good alternatives to understand habitats' viability and landscape isolation/connectivity.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/09640568.2023.2185507</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2382-3969</orcidid><orcidid>https://orcid.org/0000-0003-4854-494X</orcidid><orcidid>https://orcid.org/0000-0002-6847-6182</orcidid><orcidid>https://orcid.org/0000-0002-2670-7384</orcidid><orcidid>https://orcid.org/0000-0001-9706-8068</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-0568 |
ispartof | Journal of environmental planning and management, 2024-08, Vol.67 (10), p.2281-2302 |
issn | 0964-0568 1360-0559 |
language | eng |
recordid | cdi_crossref_primary_10_1080_09640568_2023_2185507 |
source | International Bibliography of the Social Sciences (IBSS); Taylor & Francis; PAIS Index |
subjects | Correlation analysis GEOBIA Hypothesis testing Image analysis Image processing Image resolution Land cover Land use land use/land cover (LULC) mapping Landscape landscape pattern Principal components analysis Spatial discrimination Spatial resolution urban habitats Worldview |
title | Analysis of the association between image resolution and landscape metrics using multi-sensor LULC maps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20association%20between%20image%20resolution%20and%20landscape%20metrics%20using%20multi-sensor%20LULC%20maps&rft.jtitle=Journal%20of%20environmental%20planning%20and%20management&rft.au=Varol,%20Beril&rft.date=2024-08-23&rft.volume=67&rft.issue=10&rft.spage=2281&rft.epage=2302&rft.pages=2281-2302&rft.issn=0964-0568&rft.eissn=1360-0559&rft_id=info:doi/10.1080/09640568.2023.2185507&rft_dat=%3Cproquest_cross%3E3072924830%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-e3c5bfb21dc952cec26e39a50504072c90c92168751c093a08a9f47d07588d013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072924830&rft_id=info:pmid/&rfr_iscdi=true |