Loading…
A Robust Texture Analysis and Classification Approach for Urban Land-Use and Land-Cover Feature Discrimination
Attempts to analyze urban features and to classify land use and land cover directly from high-resolution satellite data with traditional computer classification techniques have proven to be inefficient for two primary reasons. First, urban landscapes are composed of complex features. Second, traditi...
Saved in:
Published in: | Geocarto international 2001-12, Vol.16 (4), p.29-40 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Attempts to analyze urban features and to classify land use and land cover directly from high-resolution satellite data with traditional computer classification techniques have proven to be inefficient for two primary reasons. First, urban landscapes are composed of complex features. Second, traditional classifiers employ spectral information based on single pixel value and ignore a great amount of spatial information. Texture plays an important role in image segmentation and object recognition, as well as in interpretation of images in a variety of applications. This study analyzes urban texture features in multi-spectral image data. Recent developments in the very powerful mathematical theory of wavelet transforms have received overwhelming attention by image analysts. An evaluation of the ability of wavelet transform in urban feature extraction and classification was performed in this study, with six types of urban land cover features classified. The preliminary results of this research indicate that the accuracy of texture analysis in classifying urban features in fine resolution image data could be significantly improved with the use of wavelet transform approach. |
---|---|
ISSN: | 1010-6049 1752-0762 |
DOI: | 10.1080/10106040108542212 |