Loading…

Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system

Effective rain rate estimation using satellite-based measurement is imperative for many hydro-meteorological applications. With the recent advancement in satellite products and retrieving algorithms, rain rate estimations are continuously improving. This study provides a comparative performance appr...

Full description

Saved in:
Bibliographic Details
Published in:Geocarto international 2022-11, Vol.37 (21), p.6213-6231
Main Authors: Anand, Akash, Dinesh, Anand Singh, Srivastava, Prashant K., Chaudhary, Sumit Kumar, Varma, Atul Kumar, Kumar, Pavan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63
cites cdi_FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63
container_end_page 6231
container_issue 21
container_start_page 6213
container_title Geocarto international
container_volume 37
creator Anand, Akash
Dinesh, Anand Singh
Srivastava, Prashant K.
Chaudhary, Sumit Kumar
Varma, Atul Kumar
Kumar, Pavan
description Effective rain rate estimation using satellite-based measurement is imperative for many hydro-meteorological applications. With the recent advancement in satellite products and retrieving algorithms, rain rate estimations are continuously improving. This study provides a comparative performance appraisal of three hybrid machine learning algorithms namely Adaptive Neuro-Fuzzy Inference System (ANFIS), Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Hybrid Fuzzy Inference System (HYFIS) for rain rate estimation using the Global Precipitation Measurement (GPM)'s Microwave Imager (GMI) and ground-based Disdrometer data. The in situ sampling was conducted at four different locations (both land and ocean) across the Indian region and different statistical metrics were used to evaluate the performances of these models. The results showed that HYFIS algorithm has provided better rain rate estimation than ANFIS and DENFIS. The study endorses these neuro-fuzzy models for generating accurate precipitation products and can be considered as an alternative for future satellite retrieval algorithms.
doi_str_mv 10.1080/10106049.2021.1936208
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10106049_2021_1936208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10106049_2021_1936208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKuPIGTnamr-ZjKzU4o_hYIgug63k6REZjIlSVvGN_FtTWndurqXyznnfhyEbimZUVKTe0ooqYhoZowwOqMNrxipz9CEypIVRFbsPO9ZUxxEl-gqxi9CuKwrPkE_7-C8ha7DAZLBJibXQ3KDx8POBLzw2gHeRufXeN0NK-jwJpjWbVw6qnoDcRtMb3y6i7h3bRj2sDM4p6yzX0OCaFLE4DXWzloTshLvIDjw-TxYbLff3yPOEEM4fY5jTKa_RheZK5qb05yiz-enj_lrsXx7Wcwfl0XLBElFJWXJgVSsZpaKleG1YQ3wtq1LSkA2XAu2qqlgDaOStVoQw4WVjS6Z0KWu-BSVx9yMHmMwVm1Cpg-jokQd-lV__apDv-rUb_Y9HH0n9P0QOq0SjN0QbADfuqj4_xG_SDWFqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Anand, Akash ; Dinesh, Anand Singh ; Srivastava, Prashant K. ; Chaudhary, Sumit Kumar ; Varma, Atul Kumar ; Kumar, Pavan</creator><creatorcontrib>Anand, Akash ; Dinesh, Anand Singh ; Srivastava, Prashant K. ; Chaudhary, Sumit Kumar ; Varma, Atul Kumar ; Kumar, Pavan</creatorcontrib><description>Effective rain rate estimation using satellite-based measurement is imperative for many hydro-meteorological applications. With the recent advancement in satellite products and retrieving algorithms, rain rate estimations are continuously improving. This study provides a comparative performance appraisal of three hybrid machine learning algorithms namely Adaptive Neuro-Fuzzy Inference System (ANFIS), Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Hybrid Fuzzy Inference System (HYFIS) for rain rate estimation using the Global Precipitation Measurement (GPM)'s Microwave Imager (GMI) and ground-based Disdrometer data. The in situ sampling was conducted at four different locations (both land and ocean) across the Indian region and different statistical metrics were used to evaluate the performances of these models. The results showed that HYFIS algorithm has provided better rain rate estimation than ANFIS and DENFIS. The study endorses these neuro-fuzzy models for generating accurate precipitation products and can be considered as an alternative for future satellite retrieval algorithms.</description><identifier>ISSN: 1010-6049</identifier><identifier>EISSN: 1752-0762</identifier><identifier>DOI: 10.1080/10106049.2021.1936208</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>GPM microwave imager ; machine learning ; Neuro-fuzzy Models ; retrieval algorithm ; statistical metrices</subject><ispartof>Geocarto international, 2022-11, Vol.37 (21), p.6213-6231</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63</citedby><cites>FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63</cites><orcidid>0000-0002-4155-630X ; 0000-0001-6553-0983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Anand, Akash</creatorcontrib><creatorcontrib>Dinesh, Anand Singh</creatorcontrib><creatorcontrib>Srivastava, Prashant K.</creatorcontrib><creatorcontrib>Chaudhary, Sumit Kumar</creatorcontrib><creatorcontrib>Varma, Atul Kumar</creatorcontrib><creatorcontrib>Kumar, Pavan</creatorcontrib><title>Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system</title><title>Geocarto international</title><description>Effective rain rate estimation using satellite-based measurement is imperative for many hydro-meteorological applications. With the recent advancement in satellite products and retrieving algorithms, rain rate estimations are continuously improving. This study provides a comparative performance appraisal of three hybrid machine learning algorithms namely Adaptive Neuro-Fuzzy Inference System (ANFIS), Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Hybrid Fuzzy Inference System (HYFIS) for rain rate estimation using the Global Precipitation Measurement (GPM)'s Microwave Imager (GMI) and ground-based Disdrometer data. The in situ sampling was conducted at four different locations (both land and ocean) across the Indian region and different statistical metrics were used to evaluate the performances of these models. The results showed that HYFIS algorithm has provided better rain rate estimation than ANFIS and DENFIS. The study endorses these neuro-fuzzy models for generating accurate precipitation products and can be considered as an alternative for future satellite retrieval algorithms.</description><subject>GPM microwave imager</subject><subject>machine learning</subject><subject>Neuro-fuzzy Models</subject><subject>retrieval algorithm</subject><subject>statistical metrices</subject><issn>1010-6049</issn><issn>1752-0762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKuPIGTnamr-ZjKzU4o_hYIgug63k6REZjIlSVvGN_FtTWndurqXyznnfhyEbimZUVKTe0ooqYhoZowwOqMNrxipz9CEypIVRFbsPO9ZUxxEl-gqxi9CuKwrPkE_7-C8ha7DAZLBJibXQ3KDx8POBLzw2gHeRufXeN0NK-jwJpjWbVw6qnoDcRtMb3y6i7h3bRj2sDM4p6yzX0OCaFLE4DXWzloTshLvIDjw-TxYbLff3yPOEEM4fY5jTKa_RheZK5qb05yiz-enj_lrsXx7Wcwfl0XLBElFJWXJgVSsZpaKleG1YQ3wtq1LSkA2XAu2qqlgDaOStVoQw4WVjS6Z0KWu-BSVx9yMHmMwVm1Cpg-jokQd-lV__apDv-rUb_Y9HH0n9P0QOq0SjN0QbADfuqj4_xG_SDWFqg</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Anand, Akash</creator><creator>Dinesh, Anand Singh</creator><creator>Srivastava, Prashant K.</creator><creator>Chaudhary, Sumit Kumar</creator><creator>Varma, Atul Kumar</creator><creator>Kumar, Pavan</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4155-630X</orcidid><orcidid>https://orcid.org/0000-0001-6553-0983</orcidid></search><sort><creationdate>20221102</creationdate><title>Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system</title><author>Anand, Akash ; Dinesh, Anand Singh ; Srivastava, Prashant K. ; Chaudhary, Sumit Kumar ; Varma, Atul Kumar ; Kumar, Pavan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>GPM microwave imager</topic><topic>machine learning</topic><topic>Neuro-fuzzy Models</topic><topic>retrieval algorithm</topic><topic>statistical metrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anand, Akash</creatorcontrib><creatorcontrib>Dinesh, Anand Singh</creatorcontrib><creatorcontrib>Srivastava, Prashant K.</creatorcontrib><creatorcontrib>Chaudhary, Sumit Kumar</creatorcontrib><creatorcontrib>Varma, Atul Kumar</creatorcontrib><creatorcontrib>Kumar, Pavan</creatorcontrib><collection>CrossRef</collection><jtitle>Geocarto international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anand, Akash</au><au>Dinesh, Anand Singh</au><au>Srivastava, Prashant K.</au><au>Chaudhary, Sumit Kumar</au><au>Varma, Atul Kumar</au><au>Kumar, Pavan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system</atitle><jtitle>Geocarto international</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>37</volume><issue>21</issue><spage>6213</spage><epage>6231</epage><pages>6213-6231</pages><issn>1010-6049</issn><eissn>1752-0762</eissn><abstract>Effective rain rate estimation using satellite-based measurement is imperative for many hydro-meteorological applications. With the recent advancement in satellite products and retrieving algorithms, rain rate estimations are continuously improving. This study provides a comparative performance appraisal of three hybrid machine learning algorithms namely Adaptive Neuro-Fuzzy Inference System (ANFIS), Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Hybrid Fuzzy Inference System (HYFIS) for rain rate estimation using the Global Precipitation Measurement (GPM)'s Microwave Imager (GMI) and ground-based Disdrometer data. The in situ sampling was conducted at four different locations (both land and ocean) across the Indian region and different statistical metrics were used to evaluate the performances of these models. The results showed that HYFIS algorithm has provided better rain rate estimation than ANFIS and DENFIS. The study endorses these neuro-fuzzy models for generating accurate precipitation products and can be considered as an alternative for future satellite retrieval algorithms.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/10106049.2021.1936208</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4155-630X</orcidid><orcidid>https://orcid.org/0000-0001-6553-0983</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1010-6049
ispartof Geocarto international, 2022-11, Vol.37 (21), p.6213-6231
issn 1010-6049
1752-0762
language eng
recordid cdi_crossref_primary_10_1080_10106049_2021_1936208
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects GPM microwave imager
machine learning
Neuro-fuzzy Models
retrieval algorithm
statistical metrices
title Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rainfall%20rate%20estimation%20over%20India%20using%20global%20precipitation%20measurement's%20microwave%20imager%20datasets%20and%20different%20variants%20of%20fuzzy%20information%20system&rft.jtitle=Geocarto%20international&rft.au=Anand,%20Akash&rft.date=2022-11-02&rft.volume=37&rft.issue=21&rft.spage=6213&rft.epage=6231&rft.pages=6213-6231&rft.issn=1010-6049&rft.eissn=1752-0762&rft_id=info:doi/10.1080/10106049.2021.1936208&rft_dat=%3Ccrossref_infor%3E10_1080_10106049_2021_1936208%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true