Loading…
Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system
Effective rain rate estimation using satellite-based measurement is imperative for many hydro-meteorological applications. With the recent advancement in satellite products and retrieving algorithms, rain rate estimations are continuously improving. This study provides a comparative performance appr...
Saved in:
Published in: | Geocarto international 2022-11, Vol.37 (21), p.6213-6231 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63 |
container_end_page | 6231 |
container_issue | 21 |
container_start_page | 6213 |
container_title | Geocarto international |
container_volume | 37 |
creator | Anand, Akash Dinesh, Anand Singh Srivastava, Prashant K. Chaudhary, Sumit Kumar Varma, Atul Kumar Kumar, Pavan |
description | Effective rain rate estimation using satellite-based measurement is imperative for many hydro-meteorological applications. With the recent advancement in satellite products and retrieving algorithms, rain rate estimations are continuously improving. This study provides a comparative performance appraisal of three hybrid machine learning algorithms namely Adaptive Neuro-Fuzzy Inference System (ANFIS), Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Hybrid Fuzzy Inference System (HYFIS) for rain rate estimation using the Global Precipitation Measurement (GPM)'s Microwave Imager (GMI) and ground-based Disdrometer data. The in situ sampling was conducted at four different locations (both land and ocean) across the Indian region and different statistical metrics were used to evaluate the performances of these models. The results showed that HYFIS algorithm has provided better rain rate estimation than ANFIS and DENFIS. The study endorses these neuro-fuzzy models for generating accurate precipitation products and can be considered as an alternative for future satellite retrieval algorithms. |
doi_str_mv | 10.1080/10106049.2021.1936208 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10106049_2021_1936208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10106049_2021_1936208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKuPIGTnamr-ZjKzU4o_hYIgug63k6REZjIlSVvGN_FtTWndurqXyznnfhyEbimZUVKTe0ooqYhoZowwOqMNrxipz9CEypIVRFbsPO9ZUxxEl-gqxi9CuKwrPkE_7-C8ha7DAZLBJibXQ3KDx8POBLzw2gHeRufXeN0NK-jwJpjWbVw6qnoDcRtMb3y6i7h3bRj2sDM4p6yzX0OCaFLE4DXWzloTshLvIDjw-TxYbLff3yPOEEM4fY5jTKa_RheZK5qb05yiz-enj_lrsXx7Wcwfl0XLBElFJWXJgVSsZpaKleG1YQ3wtq1LSkA2XAu2qqlgDaOStVoQw4WVjS6Z0KWu-BSVx9yMHmMwVm1Cpg-jokQd-lV__apDv-rUb_Y9HH0n9P0QOq0SjN0QbADfuqj4_xG_SDWFqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Anand, Akash ; Dinesh, Anand Singh ; Srivastava, Prashant K. ; Chaudhary, Sumit Kumar ; Varma, Atul Kumar ; Kumar, Pavan</creator><creatorcontrib>Anand, Akash ; Dinesh, Anand Singh ; Srivastava, Prashant K. ; Chaudhary, Sumit Kumar ; Varma, Atul Kumar ; Kumar, Pavan</creatorcontrib><description>Effective rain rate estimation using satellite-based measurement is imperative for many hydro-meteorological applications. With the recent advancement in satellite products and retrieving algorithms, rain rate estimations are continuously improving. This study provides a comparative performance appraisal of three hybrid machine learning algorithms namely Adaptive Neuro-Fuzzy Inference System (ANFIS), Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Hybrid Fuzzy Inference System (HYFIS) for rain rate estimation using the Global Precipitation Measurement (GPM)'s Microwave Imager (GMI) and ground-based Disdrometer data. The in situ sampling was conducted at four different locations (both land and ocean) across the Indian region and different statistical metrics were used to evaluate the performances of these models. The results showed that HYFIS algorithm has provided better rain rate estimation than ANFIS and DENFIS. The study endorses these neuro-fuzzy models for generating accurate precipitation products and can be considered as an alternative for future satellite retrieval algorithms.</description><identifier>ISSN: 1010-6049</identifier><identifier>EISSN: 1752-0762</identifier><identifier>DOI: 10.1080/10106049.2021.1936208</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>GPM microwave imager ; machine learning ; Neuro-fuzzy Models ; retrieval algorithm ; statistical metrices</subject><ispartof>Geocarto international, 2022-11, Vol.37 (21), p.6213-6231</ispartof><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63</citedby><cites>FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63</cites><orcidid>0000-0002-4155-630X ; 0000-0001-6553-0983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Anand, Akash</creatorcontrib><creatorcontrib>Dinesh, Anand Singh</creatorcontrib><creatorcontrib>Srivastava, Prashant K.</creatorcontrib><creatorcontrib>Chaudhary, Sumit Kumar</creatorcontrib><creatorcontrib>Varma, Atul Kumar</creatorcontrib><creatorcontrib>Kumar, Pavan</creatorcontrib><title>Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system</title><title>Geocarto international</title><description>Effective rain rate estimation using satellite-based measurement is imperative for many hydro-meteorological applications. With the recent advancement in satellite products and retrieving algorithms, rain rate estimations are continuously improving. This study provides a comparative performance appraisal of three hybrid machine learning algorithms namely Adaptive Neuro-Fuzzy Inference System (ANFIS), Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Hybrid Fuzzy Inference System (HYFIS) for rain rate estimation using the Global Precipitation Measurement (GPM)'s Microwave Imager (GMI) and ground-based Disdrometer data. The in situ sampling was conducted at four different locations (both land and ocean) across the Indian region and different statistical metrics were used to evaluate the performances of these models. The results showed that HYFIS algorithm has provided better rain rate estimation than ANFIS and DENFIS. The study endorses these neuro-fuzzy models for generating accurate precipitation products and can be considered as an alternative for future satellite retrieval algorithms.</description><subject>GPM microwave imager</subject><subject>machine learning</subject><subject>Neuro-fuzzy Models</subject><subject>retrieval algorithm</subject><subject>statistical metrices</subject><issn>1010-6049</issn><issn>1752-0762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKuPIGTnamr-ZjKzU4o_hYIgug63k6REZjIlSVvGN_FtTWndurqXyznnfhyEbimZUVKTe0ooqYhoZowwOqMNrxipz9CEypIVRFbsPO9ZUxxEl-gqxi9CuKwrPkE_7-C8ha7DAZLBJibXQ3KDx8POBLzw2gHeRufXeN0NK-jwJpjWbVw6qnoDcRtMb3y6i7h3bRj2sDM4p6yzX0OCaFLE4DXWzloTshLvIDjw-TxYbLff3yPOEEM4fY5jTKa_RheZK5qb05yiz-enj_lrsXx7Wcwfl0XLBElFJWXJgVSsZpaKleG1YQ3wtq1LSkA2XAu2qqlgDaOStVoQw4WVjS6Z0KWu-BSVx9yMHmMwVm1Cpg-jokQd-lV__apDv-rUb_Y9HH0n9P0QOq0SjN0QbADfuqj4_xG_SDWFqg</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Anand, Akash</creator><creator>Dinesh, Anand Singh</creator><creator>Srivastava, Prashant K.</creator><creator>Chaudhary, Sumit Kumar</creator><creator>Varma, Atul Kumar</creator><creator>Kumar, Pavan</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4155-630X</orcidid><orcidid>https://orcid.org/0000-0001-6553-0983</orcidid></search><sort><creationdate>20221102</creationdate><title>Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system</title><author>Anand, Akash ; Dinesh, Anand Singh ; Srivastava, Prashant K. ; Chaudhary, Sumit Kumar ; Varma, Atul Kumar ; Kumar, Pavan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>GPM microwave imager</topic><topic>machine learning</topic><topic>Neuro-fuzzy Models</topic><topic>retrieval algorithm</topic><topic>statistical metrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anand, Akash</creatorcontrib><creatorcontrib>Dinesh, Anand Singh</creatorcontrib><creatorcontrib>Srivastava, Prashant K.</creatorcontrib><creatorcontrib>Chaudhary, Sumit Kumar</creatorcontrib><creatorcontrib>Varma, Atul Kumar</creatorcontrib><creatorcontrib>Kumar, Pavan</creatorcontrib><collection>CrossRef</collection><jtitle>Geocarto international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anand, Akash</au><au>Dinesh, Anand Singh</au><au>Srivastava, Prashant K.</au><au>Chaudhary, Sumit Kumar</au><au>Varma, Atul Kumar</au><au>Kumar, Pavan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system</atitle><jtitle>Geocarto international</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>37</volume><issue>21</issue><spage>6213</spage><epage>6231</epage><pages>6213-6231</pages><issn>1010-6049</issn><eissn>1752-0762</eissn><abstract>Effective rain rate estimation using satellite-based measurement is imperative for many hydro-meteorological applications. With the recent advancement in satellite products and retrieving algorithms, rain rate estimations are continuously improving. This study provides a comparative performance appraisal of three hybrid machine learning algorithms namely Adaptive Neuro-Fuzzy Inference System (ANFIS), Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Hybrid Fuzzy Inference System (HYFIS) for rain rate estimation using the Global Precipitation Measurement (GPM)'s Microwave Imager (GMI) and ground-based Disdrometer data. The in situ sampling was conducted at four different locations (both land and ocean) across the Indian region and different statistical metrics were used to evaluate the performances of these models. The results showed that HYFIS algorithm has provided better rain rate estimation than ANFIS and DENFIS. The study endorses these neuro-fuzzy models for generating accurate precipitation products and can be considered as an alternative for future satellite retrieval algorithms.</abstract><pub>Taylor & Francis</pub><doi>10.1080/10106049.2021.1936208</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4155-630X</orcidid><orcidid>https://orcid.org/0000-0001-6553-0983</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1010-6049 |
ispartof | Geocarto international, 2022-11, Vol.37 (21), p.6213-6231 |
issn | 1010-6049 1752-0762 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10106049_2021_1936208 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | GPM microwave imager machine learning Neuro-fuzzy Models retrieval algorithm statistical metrices |
title | Rainfall rate estimation over India using global precipitation measurement's microwave imager datasets and different variants of fuzzy information system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rainfall%20rate%20estimation%20over%20India%20using%20global%20precipitation%20measurement's%20microwave%20imager%20datasets%20and%20different%20variants%20of%20fuzzy%20information%20system&rft.jtitle=Geocarto%20international&rft.au=Anand,%20Akash&rft.date=2022-11-02&rft.volume=37&rft.issue=21&rft.spage=6213&rft.epage=6231&rft.pages=6213-6231&rft.issn=1010-6049&rft.eissn=1752-0762&rft_id=info:doi/10.1080/10106049.2021.1936208&rft_dat=%3Ccrossref_infor%3E10_1080_10106049_2021_1936208%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-67753a06282f14be38e29a3cc8510a793d42b814292172cd40e34f79d524d5d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |