Loading…

An integrated framework to identify and map gullies in a Mediterranean region of Turkey

This research introduces a scientific methodology to identify areas affected by gully erosion using Geographic Object Based Image Analysis (GEOBIA) and Random Forest (RF) supervised machine learning. The GEOBIA and RF were applied in Besni district, which has a Mediterranean climate, of Adiyaman pro...

Full description

Saved in:
Bibliographic Details
Published in:Geocarto international 2022-12, Vol.37 (26), p.12846-12866
Main Authors: Kılıç, Miraç, Gündoğan, Recep, Günal, Hikmet, Budak, Mesut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273t-887d83548b760cb297352ade1623447fcd07828805649e87972906c5015239233
cites cdi_FETCH-LOGICAL-c273t-887d83548b760cb297352ade1623447fcd07828805649e87972906c5015239233
container_end_page 12866
container_issue 26
container_start_page 12846
container_title Geocarto international
container_volume 37
creator Kılıç, Miraç
Gündoğan, Recep
Günal, Hikmet
Budak, Mesut
description This research introduces a scientific methodology to identify areas affected by gully erosion using Geographic Object Based Image Analysis (GEOBIA) and Random Forest (RF) supervised machine learning. The GEOBIA and RF were applied in Besni district, which has a Mediterranean climate, of Adiyaman province in Turkey by including many factors in the model. Estimation Scale Parameter (ESPII) algorithm was used in the segmentation phase. The novelty of this study is the implementation of RF supervised classification algorithm to classify a large number of objects determined after the segmentation process, due to the large size of the study area. Therefore, open access data has been evaluated with high classification accuracy without the need for labor. Precision, Recall and F1-Score values were calculated using true positive (TP), true negative (TN), false positive (FP) and false negative (FN) values based on field observations and Google Earth images of the study area. The TP, TN, FP and FN values were 0.90, 0.95 and 0.92, respectively. In addition, a Kappa-index was calculated as 0.88. The gully erosion map obtained using aforementioned methodology can be used to take necessary measures to prevent further degradation and plan sustainable land uses.
doi_str_mv 10.1080/10106049.2022.2071478
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10106049_2022_2071478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10106049_2022_2071478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-887d83548b760cb297352ade1623447fcd07828805649e87972906c5015239233</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUj-gZSxHcfOjqriJRWxKWJpufGkMk2cykmF8vc4atmymZnFPVeaQ8g9gwUDDQ8MGBSQlwsOnKehWK70BZkxJXkGquCX6U6ZbApdk5u-_wYQShdiRr6Wgfow4C7aAR2to23xp4t7OnTUOwyDr0dqg6OtPdDdsWk89gmglr6j8wPGaAPaQCPufBdoV9PNMe5xvCVXtW16vDvvOfl8ftqsXrP1x8vbarnOKq7EkGmtnBYy11tVQLXlpRKSW4es4CLPVV05UJprDbLIS9SqVLyEopLAJBclF2JO5Km3il3fR6zNIfrWxtEwMJMd82fHTHbM2U7iHk-cD3UXW5t-bpwZ7Nh0MUkIle-N-L_iF9PIahU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An integrated framework to identify and map gullies in a Mediterranean region of Turkey</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Kılıç, Miraç ; Gündoğan, Recep ; Günal, Hikmet ; Budak, Mesut</creator><creatorcontrib>Kılıç, Miraç ; Gündoğan, Recep ; Günal, Hikmet ; Budak, Mesut</creatorcontrib><description>This research introduces a scientific methodology to identify areas affected by gully erosion using Geographic Object Based Image Analysis (GEOBIA) and Random Forest (RF) supervised machine learning. The GEOBIA and RF were applied in Besni district, which has a Mediterranean climate, of Adiyaman province in Turkey by including many factors in the model. Estimation Scale Parameter (ESPII) algorithm was used in the segmentation phase. The novelty of this study is the implementation of RF supervised classification algorithm to classify a large number of objects determined after the segmentation process, due to the large size of the study area. Therefore, open access data has been evaluated with high classification accuracy without the need for labor. Precision, Recall and F1-Score values were calculated using true positive (TP), true negative (TN), false positive (FP) and false negative (FN) values based on field observations and Google Earth images of the study area. The TP, TN, FP and FN values were 0.90, 0.95 and 0.92, respectively. In addition, a Kappa-index was calculated as 0.88. The gully erosion map obtained using aforementioned methodology can be used to take necessary measures to prevent further degradation and plan sustainable land uses.</description><identifier>ISSN: 1010-6049</identifier><identifier>EISSN: 1752-0762</identifier><identifier>DOI: 10.1080/10106049.2022.2071478</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>GEOBIA ; gully ; Machine learning ; object pureness ; random forest ; segmentation</subject><ispartof>Geocarto international, 2022-12, Vol.37 (26), p.12846-12866</ispartof><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-887d83548b760cb297352ade1623447fcd07828805649e87972906c5015239233</citedby><cites>FETCH-LOGICAL-c273t-887d83548b760cb297352ade1623447fcd07828805649e87972906c5015239233</cites><orcidid>0000-0001-5715-1246 ; 0000-0001-8877-1130 ; 0000-0002-4648-2645 ; 0000-0001-8026-5540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kılıç, Miraç</creatorcontrib><creatorcontrib>Gündoğan, Recep</creatorcontrib><creatorcontrib>Günal, Hikmet</creatorcontrib><creatorcontrib>Budak, Mesut</creatorcontrib><title>An integrated framework to identify and map gullies in a Mediterranean region of Turkey</title><title>Geocarto international</title><description>This research introduces a scientific methodology to identify areas affected by gully erosion using Geographic Object Based Image Analysis (GEOBIA) and Random Forest (RF) supervised machine learning. The GEOBIA and RF were applied in Besni district, which has a Mediterranean climate, of Adiyaman province in Turkey by including many factors in the model. Estimation Scale Parameter (ESPII) algorithm was used in the segmentation phase. The novelty of this study is the implementation of RF supervised classification algorithm to classify a large number of objects determined after the segmentation process, due to the large size of the study area. Therefore, open access data has been evaluated with high classification accuracy without the need for labor. Precision, Recall and F1-Score values were calculated using true positive (TP), true negative (TN), false positive (FP) and false negative (FN) values based on field observations and Google Earth images of the study area. The TP, TN, FP and FN values were 0.90, 0.95 and 0.92, respectively. In addition, a Kappa-index was calculated as 0.88. The gully erosion map obtained using aforementioned methodology can be used to take necessary measures to prevent further degradation and plan sustainable land uses.</description><subject>GEOBIA</subject><subject>gully</subject><subject>Machine learning</subject><subject>object pureness</subject><subject>random forest</subject><subject>segmentation</subject><issn>1010-6049</issn><issn>1752-0762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwCUj-gZSxHcfOjqriJRWxKWJpufGkMk2cykmF8vc4atmymZnFPVeaQ8g9gwUDDQ8MGBSQlwsOnKehWK70BZkxJXkGquCX6U6ZbApdk5u-_wYQShdiRr6Wgfow4C7aAR2to23xp4t7OnTUOwyDr0dqg6OtPdDdsWk89gmglr6j8wPGaAPaQCPufBdoV9PNMe5xvCVXtW16vDvvOfl8ftqsXrP1x8vbarnOKq7EkGmtnBYy11tVQLXlpRKSW4es4CLPVV05UJprDbLIS9SqVLyEopLAJBclF2JO5Km3il3fR6zNIfrWxtEwMJMd82fHTHbM2U7iHk-cD3UXW5t-bpwZ7Nh0MUkIle-N-L_iF9PIahU</recordid><startdate>20221213</startdate><enddate>20221213</enddate><creator>Kılıç, Miraç</creator><creator>Gündoğan, Recep</creator><creator>Günal, Hikmet</creator><creator>Budak, Mesut</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5715-1246</orcidid><orcidid>https://orcid.org/0000-0001-8877-1130</orcidid><orcidid>https://orcid.org/0000-0002-4648-2645</orcidid><orcidid>https://orcid.org/0000-0001-8026-5540</orcidid></search><sort><creationdate>20221213</creationdate><title>An integrated framework to identify and map gullies in a Mediterranean region of Turkey</title><author>Kılıç, Miraç ; Gündoğan, Recep ; Günal, Hikmet ; Budak, Mesut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-887d83548b760cb297352ade1623447fcd07828805649e87972906c5015239233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>GEOBIA</topic><topic>gully</topic><topic>Machine learning</topic><topic>object pureness</topic><topic>random forest</topic><topic>segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kılıç, Miraç</creatorcontrib><creatorcontrib>Gündoğan, Recep</creatorcontrib><creatorcontrib>Günal, Hikmet</creatorcontrib><creatorcontrib>Budak, Mesut</creatorcontrib><collection>CrossRef</collection><jtitle>Geocarto international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kılıç, Miraç</au><au>Gündoğan, Recep</au><au>Günal, Hikmet</au><au>Budak, Mesut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated framework to identify and map gullies in a Mediterranean region of Turkey</atitle><jtitle>Geocarto international</jtitle><date>2022-12-13</date><risdate>2022</risdate><volume>37</volume><issue>26</issue><spage>12846</spage><epage>12866</epage><pages>12846-12866</pages><issn>1010-6049</issn><eissn>1752-0762</eissn><abstract>This research introduces a scientific methodology to identify areas affected by gully erosion using Geographic Object Based Image Analysis (GEOBIA) and Random Forest (RF) supervised machine learning. The GEOBIA and RF were applied in Besni district, which has a Mediterranean climate, of Adiyaman province in Turkey by including many factors in the model. Estimation Scale Parameter (ESPII) algorithm was used in the segmentation phase. The novelty of this study is the implementation of RF supervised classification algorithm to classify a large number of objects determined after the segmentation process, due to the large size of the study area. Therefore, open access data has been evaluated with high classification accuracy without the need for labor. Precision, Recall and F1-Score values were calculated using true positive (TP), true negative (TN), false positive (FP) and false negative (FN) values based on field observations and Google Earth images of the study area. The TP, TN, FP and FN values were 0.90, 0.95 and 0.92, respectively. In addition, a Kappa-index was calculated as 0.88. The gully erosion map obtained using aforementioned methodology can be used to take necessary measures to prevent further degradation and plan sustainable land uses.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/10106049.2022.2071478</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5715-1246</orcidid><orcidid>https://orcid.org/0000-0001-8877-1130</orcidid><orcidid>https://orcid.org/0000-0002-4648-2645</orcidid><orcidid>https://orcid.org/0000-0001-8026-5540</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1010-6049
ispartof Geocarto international, 2022-12, Vol.37 (26), p.12846-12866
issn 1010-6049
1752-0762
language eng
recordid cdi_crossref_primary_10_1080_10106049_2022_2071478
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects GEOBIA
gully
Machine learning
object pureness
random forest
segmentation
title An integrated framework to identify and map gullies in a Mediterranean region of Turkey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20framework%20to%20identify%20and%20map%20gullies%20in%20a%20Mediterranean%20region%20of%20Turkey&rft.jtitle=Geocarto%20international&rft.au=K%C4%B1l%C4%B1%C3%A7,%20Mira%C3%A7&rft.date=2022-12-13&rft.volume=37&rft.issue=26&rft.spage=12846&rft.epage=12866&rft.pages=12846-12866&rft.issn=1010-6049&rft.eissn=1752-0762&rft_id=info:doi/10.1080/10106049.2022.2071478&rft_dat=%3Ccrossref_infor%3E10_1080_10106049_2022_2071478%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-887d83548b760cb297352ade1623447fcd07828805649e87972906c5015239233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true