Loading…
Families of regular solutions of singular systems
The seminal 1969 paper of W.A. Harris Jr., Y. Sibuya, and L. Weinberg provided new proofs for the Perron-Lettenmeyer theorem, as well as several other classical results, and has stimulated renewed consideration of families of regular solutions of certain singular problems. In this paper we give some...
Saved in:
Published in: | Journal of difference equations and applications 2001-01, Vol.7 (1), p.51-62 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c228t-fb9cecf59110bdd0040312acb2abec5add90f67680c97b351adc6294ace9a0e73 |
container_end_page | 62 |
container_issue | 1 |
container_start_page | 51 |
container_title | Journal of difference equations and applications |
container_volume | 7 |
creator | Grimm, L.J. Haile, B.D. HALL, L.M. |
description | The seminal 1969 paper of W.A. Harris Jr., Y. Sibuya, and L. Weinberg provided new proofs for the Perron-Lettenmeyer theorem, as well as several other classical results, and has stimulated renewed consideration of families of regular solutions of certain singular problems. In this paper we give some further applications of the method developed there and, in addition, examine some connections between the Lettenmeyer theorem and an alternative theorem which addresses a problem posed by H.L. Turrittin that dates back to an 1845 example of Briot and Bouquet |
doi_str_mv | 10.1080/10236190108808262 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10236190108808262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10236190108808262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-fb9cecf59110bdd0040312acb2abec5add90f67680c97b351adc6294ace9a0e73</originalsourceid><addsrcrecordid>eNqFj89OwzAMxiMEEmPwANz2AgUnXdNE4oImxpAmcYFz5OYPCkoblHSCvj1h7DYhTrY_-2f7I-Sawg0FAbcUWM2phFIIEIyzEzKjDa-rhjI4LXnpV2VAnJOLnN8BWNH5jNA19j54mxfRLZJ92wVMixzDbvRx2IvZDwd1yqPt8yU5cxiyvTrEOXldP7ysNtX2-fFpdb-tNGNirFwntdWukZRCZwzAEmrKUHcMO6sbNEaC4y0XoGXb1Q1FozmTS9RWIti2npff9nt1ijkn69RH8j2mSVFQP57VkefCtL-MH1xMPX7GFIwacQoxuYSD9vmYUuPXWMi7f8n678Pfoe9vQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Families of regular solutions of singular systems</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Grimm, L.J. ; Haile, B.D. ; HALL, L.M.</creator><creatorcontrib>Grimm, L.J. ; Haile, B.D. ; HALL, L.M.</creatorcontrib><description>The seminal 1969 paper of W.A. Harris Jr., Y. Sibuya, and L. Weinberg provided new proofs for the Perron-Lettenmeyer theorem, as well as several other classical results, and has stimulated renewed consideration of families of regular solutions of certain singular problems. In this paper we give some further applications of the method developed there and, in addition, examine some connections between the Lettenmeyer theorem and an alternative theorem which addresses a problem posed by H.L. Turrittin that dates back to an 1845 example of Briot and Bouquet</description><identifier>ISSN: 1023-6198</identifier><identifier>EISSN: 1563-5120</identifier><identifier>DOI: 10.1080/10236190108808262</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>Holomorphic solution ; Linear difference equation ; Linear differential equation ; Regular singular point</subject><ispartof>Journal of difference equations and applications, 2001-01, Vol.7 (1), p.51-62</ispartof><rights>Copyright Taylor & Francis Group, LLC 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-fb9cecf59110bdd0040312acb2abec5add90f67680c97b351adc6294ace9a0e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grimm, L.J.</creatorcontrib><creatorcontrib>Haile, B.D.</creatorcontrib><creatorcontrib>HALL, L.M.</creatorcontrib><title>Families of regular solutions of singular systems</title><title>Journal of difference equations and applications</title><description>The seminal 1969 paper of W.A. Harris Jr., Y. Sibuya, and L. Weinberg provided new proofs for the Perron-Lettenmeyer theorem, as well as several other classical results, and has stimulated renewed consideration of families of regular solutions of certain singular problems. In this paper we give some further applications of the method developed there and, in addition, examine some connections between the Lettenmeyer theorem and an alternative theorem which addresses a problem posed by H.L. Turrittin that dates back to an 1845 example of Briot and Bouquet</description><subject>Holomorphic solution</subject><subject>Linear difference equation</subject><subject>Linear differential equation</subject><subject>Regular singular point</subject><issn>1023-6198</issn><issn>1563-5120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFj89OwzAMxiMEEmPwANz2AgUnXdNE4oImxpAmcYFz5OYPCkoblHSCvj1h7DYhTrY_-2f7I-Sawg0FAbcUWM2phFIIEIyzEzKjDa-rhjI4LXnpV2VAnJOLnN8BWNH5jNA19j54mxfRLZJ92wVMixzDbvRx2IvZDwd1yqPt8yU5cxiyvTrEOXldP7ysNtX2-fFpdb-tNGNirFwntdWukZRCZwzAEmrKUHcMO6sbNEaC4y0XoGXb1Q1FozmTS9RWIti2npff9nt1ijkn69RH8j2mSVFQP57VkefCtL-MH1xMPX7GFIwacQoxuYSD9vmYUuPXWMi7f8n678Pfoe9vQA</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Grimm, L.J.</creator><creator>Haile, B.D.</creator><creator>HALL, L.M.</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010101</creationdate><title>Families of regular solutions of singular systems</title><author>Grimm, L.J. ; Haile, B.D. ; HALL, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-fb9cecf59110bdd0040312acb2abec5add90f67680c97b351adc6294ace9a0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Holomorphic solution</topic><topic>Linear difference equation</topic><topic>Linear differential equation</topic><topic>Regular singular point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimm, L.J.</creatorcontrib><creatorcontrib>Haile, B.D.</creatorcontrib><creatorcontrib>HALL, L.M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of difference equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm, L.J.</au><au>Haile, B.D.</au><au>HALL, L.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Families of regular solutions of singular systems</atitle><jtitle>Journal of difference equations and applications</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>7</volume><issue>1</issue><spage>51</spage><epage>62</epage><pages>51-62</pages><issn>1023-6198</issn><eissn>1563-5120</eissn><abstract>The seminal 1969 paper of W.A. Harris Jr., Y. Sibuya, and L. Weinberg provided new proofs for the Perron-Lettenmeyer theorem, as well as several other classical results, and has stimulated renewed consideration of families of regular solutions of certain singular problems. In this paper we give some further applications of the method developed there and, in addition, examine some connections between the Lettenmeyer theorem and an alternative theorem which addresses a problem posed by H.L. Turrittin that dates back to an 1845 example of Briot and Bouquet</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/10236190108808262</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-6198 |
ispartof | Journal of difference equations and applications, 2001-01, Vol.7 (1), p.51-62 |
issn | 1023-6198 1563-5120 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10236190108808262 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Holomorphic solution Linear difference equation Linear differential equation Regular singular point |
title | Families of regular solutions of singular systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Families%20of%20regular%20solutions%20of%20singular%20systems&rft.jtitle=Journal%20of%20difference%20equations%20and%20applications&rft.au=Grimm,%20L.J.&rft.date=2001-01-01&rft.volume=7&rft.issue=1&rft.spage=51&rft.epage=62&rft.pages=51-62&rft.issn=1023-6198&rft.eissn=1563-5120&rft_id=info:doi/10.1080/10236190108808262&rft_dat=%3Ccrossref_infor%3E10_1080_10236190108808262%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c228t-fb9cecf59110bdd0040312acb2abec5add90f67680c97b351adc6294ace9a0e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |