Loading…

Families of regular solutions of singular systems

The seminal 1969 paper of W.A. Harris Jr., Y. Sibuya, and L. Weinberg provided new proofs for the Perron-Lettenmeyer theorem, as well as several other classical results, and has stimulated renewed consideration of families of regular solutions of certain singular problems. In this paper we give some...

Full description

Saved in:
Bibliographic Details
Published in:Journal of difference equations and applications 2001-01, Vol.7 (1), p.51-62
Main Authors: Grimm, L.J., Haile, B.D., HALL, L.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c228t-fb9cecf59110bdd0040312acb2abec5add90f67680c97b351adc6294ace9a0e73
container_end_page 62
container_issue 1
container_start_page 51
container_title Journal of difference equations and applications
container_volume 7
creator Grimm, L.J.
Haile, B.D.
HALL, L.M.
description The seminal 1969 paper of W.A. Harris Jr., Y. Sibuya, and L. Weinberg provided new proofs for the Perron-Lettenmeyer theorem, as well as several other classical results, and has stimulated renewed consideration of families of regular solutions of certain singular problems. In this paper we give some further applications of the method developed there and, in addition, examine some connections between the Lettenmeyer theorem and an alternative theorem which addresses a problem posed by H.L. Turrittin that dates back to an 1845 example of Briot and Bouquet
doi_str_mv 10.1080/10236190108808262
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10236190108808262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10236190108808262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-fb9cecf59110bdd0040312acb2abec5add90f67680c97b351adc6294ace9a0e73</originalsourceid><addsrcrecordid>eNqFj89OwzAMxiMEEmPwANz2AgUnXdNE4oImxpAmcYFz5OYPCkoblHSCvj1h7DYhTrY_-2f7I-Sawg0FAbcUWM2phFIIEIyzEzKjDa-rhjI4LXnpV2VAnJOLnN8BWNH5jNA19j54mxfRLZJ92wVMixzDbvRx2IvZDwd1yqPt8yU5cxiyvTrEOXldP7ysNtX2-fFpdb-tNGNirFwntdWukZRCZwzAEmrKUHcMO6sbNEaC4y0XoGXb1Q1FozmTS9RWIti2npff9nt1ijkn69RH8j2mSVFQP57VkefCtL-MH1xMPX7GFIwacQoxuYSD9vmYUuPXWMi7f8n678Pfoe9vQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Families of regular solutions of singular systems</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Grimm, L.J. ; Haile, B.D. ; HALL, L.M.</creator><creatorcontrib>Grimm, L.J. ; Haile, B.D. ; HALL, L.M.</creatorcontrib><description>The seminal 1969 paper of W.A. Harris Jr., Y. Sibuya, and L. Weinberg provided new proofs for the Perron-Lettenmeyer theorem, as well as several other classical results, and has stimulated renewed consideration of families of regular solutions of certain singular problems. In this paper we give some further applications of the method developed there and, in addition, examine some connections between the Lettenmeyer theorem and an alternative theorem which addresses a problem posed by H.L. Turrittin that dates back to an 1845 example of Briot and Bouquet</description><identifier>ISSN: 1023-6198</identifier><identifier>EISSN: 1563-5120</identifier><identifier>DOI: 10.1080/10236190108808262</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>Holomorphic solution ; Linear difference equation ; Linear differential equation ; Regular singular point</subject><ispartof>Journal of difference equations and applications, 2001-01, Vol.7 (1), p.51-62</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-fb9cecf59110bdd0040312acb2abec5add90f67680c97b351adc6294ace9a0e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grimm, L.J.</creatorcontrib><creatorcontrib>Haile, B.D.</creatorcontrib><creatorcontrib>HALL, L.M.</creatorcontrib><title>Families of regular solutions of singular systems</title><title>Journal of difference equations and applications</title><description>The seminal 1969 paper of W.A. Harris Jr., Y. Sibuya, and L. Weinberg provided new proofs for the Perron-Lettenmeyer theorem, as well as several other classical results, and has stimulated renewed consideration of families of regular solutions of certain singular problems. In this paper we give some further applications of the method developed there and, in addition, examine some connections between the Lettenmeyer theorem and an alternative theorem which addresses a problem posed by H.L. Turrittin that dates back to an 1845 example of Briot and Bouquet</description><subject>Holomorphic solution</subject><subject>Linear difference equation</subject><subject>Linear differential equation</subject><subject>Regular singular point</subject><issn>1023-6198</issn><issn>1563-5120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFj89OwzAMxiMEEmPwANz2AgUnXdNE4oImxpAmcYFz5OYPCkoblHSCvj1h7DYhTrY_-2f7I-Sawg0FAbcUWM2phFIIEIyzEzKjDa-rhjI4LXnpV2VAnJOLnN8BWNH5jNA19j54mxfRLZJ92wVMixzDbvRx2IvZDwd1yqPt8yU5cxiyvTrEOXldP7ysNtX2-fFpdb-tNGNirFwntdWukZRCZwzAEmrKUHcMO6sbNEaC4y0XoGXb1Q1FozmTS9RWIti2npff9nt1ijkn69RH8j2mSVFQP57VkefCtL-MH1xMPX7GFIwacQoxuYSD9vmYUuPXWMi7f8n678Pfoe9vQA</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Grimm, L.J.</creator><creator>Haile, B.D.</creator><creator>HALL, L.M.</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010101</creationdate><title>Families of regular solutions of singular systems</title><author>Grimm, L.J. ; Haile, B.D. ; HALL, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-fb9cecf59110bdd0040312acb2abec5add90f67680c97b351adc6294ace9a0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Holomorphic solution</topic><topic>Linear difference equation</topic><topic>Linear differential equation</topic><topic>Regular singular point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimm, L.J.</creatorcontrib><creatorcontrib>Haile, B.D.</creatorcontrib><creatorcontrib>HALL, L.M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of difference equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm, L.J.</au><au>Haile, B.D.</au><au>HALL, L.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Families of regular solutions of singular systems</atitle><jtitle>Journal of difference equations and applications</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>7</volume><issue>1</issue><spage>51</spage><epage>62</epage><pages>51-62</pages><issn>1023-6198</issn><eissn>1563-5120</eissn><abstract>The seminal 1969 paper of W.A. Harris Jr., Y. Sibuya, and L. Weinberg provided new proofs for the Perron-Lettenmeyer theorem, as well as several other classical results, and has stimulated renewed consideration of families of regular solutions of certain singular problems. In this paper we give some further applications of the method developed there and, in addition, examine some connections between the Lettenmeyer theorem and an alternative theorem which addresses a problem posed by H.L. Turrittin that dates back to an 1845 example of Briot and Bouquet</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/10236190108808262</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1023-6198
ispartof Journal of difference equations and applications, 2001-01, Vol.7 (1), p.51-62
issn 1023-6198
1563-5120
language eng
recordid cdi_crossref_primary_10_1080_10236190108808262
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Holomorphic solution
Linear difference equation
Linear differential equation
Regular singular point
title Families of regular solutions of singular systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Families%20of%20regular%20solutions%20of%20singular%20systems&rft.jtitle=Journal%20of%20difference%20equations%20and%20applications&rft.au=Grimm,%20L.J.&rft.date=2001-01-01&rft.volume=7&rft.issue=1&rft.spage=51&rft.epage=62&rft.pages=51-62&rft.issn=1023-6198&rft.eissn=1563-5120&rft_id=info:doi/10.1080/10236190108808262&rft_dat=%3Ccrossref_infor%3E10_1080_10236190108808262%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c228t-fb9cecf59110bdd0040312acb2abec5add90f67680c97b351adc6294ace9a0e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true