Loading…
Metal-organic framework based on iron and terephthalic acid as a multiporous support for lipase Burkholderia lata LBBIO-BL02 and its potential for biocatalysis
Metal-organic frameworks (MOFs) are versatile materials because they have a large internal surface area and tuneable pores, making them suitable for enzyme immobilization. In this study, we prepared a typical microporous Fe-BDC MOF through a thermal treatment to produce additional meso and macropore...
Saved in:
Published in: | Biocatalysis and biotransformation 2023-09, Vol.41 (5), p.332-343 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metal-organic frameworks (MOFs) are versatile materials because they have a large internal surface area and tuneable pores, making them suitable for enzyme immobilization. In this study, we prepared a typical microporous Fe-BDC MOF through a thermal treatment to produce additional meso and macropores interconnected to each other, capable of immobilizing the Burkholderia lata LBBIO-BL02 (BLL) lipase by entrapment and physical adsorption. The immobilization efficiency (E) was 90%, and the activity retention (R) was 400% (pNPP hydrolysis). The immobilized lipase (BLL@BDC) also showed excellent activity in the hydrolysis of vegetable oils in aqueous medium, achieving up to 3,200 U g
−1
for olive oil, as well as high stability in organic solvents, especially for polar ones, such as iso-propanol (101.5 ± 2.6%), ethanol (103.0 ± 6.0%) and acetone (107.7 ± 8.3%). The results indicate that the multiporous Fe-BDC MOF is a promising support for lipase immobilization and further application in biocatalysis performed in organic media. |
---|---|
ISSN: | 1024-2422 1029-2446 |
DOI: | 10.1080/10242422.2022.2068371 |