Loading…

A Decrease in Cell Size Accompanies a Loss of Docosahexaenoate in the Rat Hippocampus

Rats raised on n-3 essential fatty acid deficient diets demonstrate spatial memory deficits. To investigate neuroanatomical correlates of these deficits, morphological analysis of the hippocampus were carried out. Adult, female rats were raised for three generations on n-3 deficient or n-3 supplemen...

Full description

Saved in:
Bibliographic Details
Published in:Nutritional neuroscience 2002, Vol.5 (2), p.103-113
Main Authors: Ahmad, Aneeq, Murthy, Mahadev, Greiner, Rebecca S., Moriguchi, Toru, Salem, Norman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rats raised on n-3 essential fatty acid deficient diets demonstrate spatial memory deficits. To investigate neuroanatomical correlates of these deficits, morphological analysis of the hippocampus were carried out. Adult, female rats were raised for three generations on n-3 deficient or n-3 supplemented diets. Two n-3 deficient diets contained adequate linoleic acid (LA), or high linoleic acid (high LA), and two supplemented diets contained LA supplemented with alpha-linolenic acid (+LNA), or linoleic supplementation with alpha- linolenic and docosahexaenoic acids (+LNA/DHA). The total fatty acid composition of the hippocampus revealed a profound loss (90%) in docosahexaenoic acid (DHA) in the hippocampi of LA and high LA animals compared to those on +LNA and +LNA/DHA diets with a reciprocal increase in docosapentaenoic acid (DPAn-6) in all phospholipid species. The volume, density; total number, and cell body size of neurons in CA1-3, granular and hilar layers of the hippocampus were measured at septal and temporal locations using unbiased stereology. No differences were detected in any of these measures except for in cell body size; CA1 pyramidal neurons in the LA group were significantly (p < 0.04) smaller than neurons in the +LNA/DHA group at the septal location.
ISSN:1028-415X
1476-8305
DOI:10.1080/10284150290018973