Loading…

Design Optimization of a Two-Stage Porous Radiant Burner through Response Surface Modeling

Model-based design optimization is a ubiquitous and powerful tool in many engineering disciplines. Its application to industrial combustion has been quite limited, however, due in part to the computational-expense of combustion simulations and, in the case of premixed combustion, noise in the object...

Full description

Saved in:
Bibliographic Details
Published in:Numerical heat transfer. Part A, Applications Applications, 2011-11, Vol.60 (9), p.727-745
Main Authors: Horsman, A. P., Daun, K. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-31089116bfbb687d90173c250f1a0927e832e84a4983dd16e3a6afcec3084c533
cites cdi_FETCH-LOGICAL-c367t-31089116bfbb687d90173c250f1a0927e832e84a4983dd16e3a6afcec3084c533
container_end_page 745
container_issue 9
container_start_page 727
container_title Numerical heat transfer. Part A, Applications
container_volume 60
creator Horsman, A. P.
Daun, K. J.
description Model-based design optimization is a ubiquitous and powerful tool in many engineering disciplines. Its application to industrial combustion has been quite limited, however, due in part to the computational-expense of combustion simulations and, in the case of premixed combustion, noise in the objective function induced by the stiffness of the governing equations. This article presents an optimization technique based on response surface modeling, in which the true objective function is minimized by generating and then minimizing a series of interpolating low-order polynomial surfaces centered on the current design iteration. The technique is demonstrated by optimizing the radiant efficiency of a two-stage porous ceramic burner, with the downstream stage pore size and porosity as design parameters. The optimization algorithm identifies solutions that produce statistically significantly improvements in the burner efficiency, and also highlights the importance of considering nonlinear interactions between variables when carrying out the optimization.
doi_str_mv 10.1080/10407782.2011.627782
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10407782_2011_627782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671368354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-31089116bfbb687d90173c250f1a0927e832e84a4983dd16e3a6afcec3084c533</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwDxgsJpYUfyS2MyG-QSoqasvCYrmO3bpK7WInqsqvx1VhYeCWO52e9_Tem2XnCA4Q5PAKwQIyxvEAQ4QGFO_mg6yHSoxySElxmOaE5Lv9cXYS4xKmwrjqZR_3Otq5A6N1a1f2S7bWO-ANkGC68fmklXMN3nzwXQRjWVvpWnDbBacDaBdpO1-AsY5r76IGky4YqTR49bVurJufZkdGNlGf_fR-9v74ML17zoejp5e7m2GuCGVtTtILFUJ0ZmYzylldQcSIwiU0SMIKM80J1ryQRcVJXSOqiaTSKK0I5IUqCelnl_u76-A_Ox1bsbJR6aaRTiffAlGGCOWkLBJ68Qdd-vRNcicqyEvEGcMJKvaQCj7GoI1YB7uSYSsQFLu8xW_eYpe32OedZNd7mXXGh5Xc-NDUopXbxgcTpFM2CvLvhW_AH4V3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>908518772</pqid></control><display><type>article</type><title>Design Optimization of a Two-Stage Porous Radiant Burner through Response Surface Modeling</title><source>Taylor and Francis Science and Technology Collection</source><creator>Horsman, A. P. ; Daun, K. J.</creator><creatorcontrib>Horsman, A. P. ; Daun, K. J.</creatorcontrib><description>Model-based design optimization is a ubiquitous and powerful tool in many engineering disciplines. Its application to industrial combustion has been quite limited, however, due in part to the computational-expense of combustion simulations and, in the case of premixed combustion, noise in the objective function induced by the stiffness of the governing equations. This article presents an optimization technique based on response surface modeling, in which the true objective function is minimized by generating and then minimizing a series of interpolating low-order polynomial surfaces centered on the current design iteration. The technique is demonstrated by optimizing the radiant efficiency of a two-stage porous ceramic burner, with the downstream stage pore size and porosity as design parameters. The optimization algorithm identifies solutions that produce statistically significantly improvements in the burner efficiency, and also highlights the importance of considering nonlinear interactions between variables when carrying out the optimization.</description><identifier>ISSN: 1040-7782</identifier><identifier>EISSN: 1521-0634</identifier><identifier>DOI: 10.1080/10407782.2011.627782</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Group</publisher><subject>Algorithms ; Combustion ; Design optimization ; Fluidized bed combustion ; Heat transfer ; Mathematical analysis ; Mathematical models ; Optimization ; Optimization algorithms ; Pore size ; Porosity ; Response surfaces ; Simulation</subject><ispartof>Numerical heat transfer. Part A, Applications, 2011-11, Vol.60 (9), p.727-745</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><rights>Copyright Taylor &amp; Francis Ltd. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-31089116bfbb687d90173c250f1a0927e832e84a4983dd16e3a6afcec3084c533</citedby><cites>FETCH-LOGICAL-c367t-31089116bfbb687d90173c250f1a0927e832e84a4983dd16e3a6afcec3084c533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Horsman, A. P.</creatorcontrib><creatorcontrib>Daun, K. J.</creatorcontrib><title>Design Optimization of a Two-Stage Porous Radiant Burner through Response Surface Modeling</title><title>Numerical heat transfer. Part A, Applications</title><description>Model-based design optimization is a ubiquitous and powerful tool in many engineering disciplines. Its application to industrial combustion has been quite limited, however, due in part to the computational-expense of combustion simulations and, in the case of premixed combustion, noise in the objective function induced by the stiffness of the governing equations. This article presents an optimization technique based on response surface modeling, in which the true objective function is minimized by generating and then minimizing a series of interpolating low-order polynomial surfaces centered on the current design iteration. The technique is demonstrated by optimizing the radiant efficiency of a two-stage porous ceramic burner, with the downstream stage pore size and porosity as design parameters. The optimization algorithm identifies solutions that produce statistically significantly improvements in the burner efficiency, and also highlights the importance of considering nonlinear interactions between variables when carrying out the optimization.</description><subject>Algorithms</subject><subject>Combustion</subject><subject>Design optimization</subject><subject>Fluidized bed combustion</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Response surfaces</subject><subject>Simulation</subject><issn>1040-7782</issn><issn>1521-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwDxgsJpYUfyS2MyG-QSoqasvCYrmO3bpK7WInqsqvx1VhYeCWO52e9_Tem2XnCA4Q5PAKwQIyxvEAQ4QGFO_mg6yHSoxySElxmOaE5Lv9cXYS4xKmwrjqZR_3Otq5A6N1a1f2S7bWO-ANkGC68fmklXMN3nzwXQRjWVvpWnDbBacDaBdpO1-AsY5r76IGky4YqTR49bVurJufZkdGNlGf_fR-9v74ML17zoejp5e7m2GuCGVtTtILFUJ0ZmYzylldQcSIwiU0SMIKM80J1ryQRcVJXSOqiaTSKK0I5IUqCelnl_u76-A_Ox1bsbJR6aaRTiffAlGGCOWkLBJ68Qdd-vRNcicqyEvEGcMJKvaQCj7GoI1YB7uSYSsQFLu8xW_eYpe32OedZNd7mXXGh5Xc-NDUopXbxgcTpFM2CvLvhW_AH4V3</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Horsman, A. P.</creator><creator>Daun, K. J.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QQ</scope><scope>JG9</scope></search><sort><creationdate>20111101</creationdate><title>Design Optimization of a Two-Stage Porous Radiant Burner through Response Surface Modeling</title><author>Horsman, A. P. ; Daun, K. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-31089116bfbb687d90173c250f1a0927e832e84a4983dd16e3a6afcec3084c533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Combustion</topic><topic>Design optimization</topic><topic>Fluidized bed combustion</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Response surfaces</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horsman, A. P.</creatorcontrib><creatorcontrib>Daun, K. J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><jtitle>Numerical heat transfer. Part A, Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horsman, A. P.</au><au>Daun, K. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Optimization of a Two-Stage Porous Radiant Burner through Response Surface Modeling</atitle><jtitle>Numerical heat transfer. Part A, Applications</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>60</volume><issue>9</issue><spage>727</spage><epage>745</epage><pages>727-745</pages><issn>1040-7782</issn><eissn>1521-0634</eissn><abstract>Model-based design optimization is a ubiquitous and powerful tool in many engineering disciplines. Its application to industrial combustion has been quite limited, however, due in part to the computational-expense of combustion simulations and, in the case of premixed combustion, noise in the objective function induced by the stiffness of the governing equations. This article presents an optimization technique based on response surface modeling, in which the true objective function is minimized by generating and then minimizing a series of interpolating low-order polynomial surfaces centered on the current design iteration. The technique is demonstrated by optimizing the radiant efficiency of a two-stage porous ceramic burner, with the downstream stage pore size and porosity as design parameters. The optimization algorithm identifies solutions that produce statistically significantly improvements in the burner efficiency, and also highlights the importance of considering nonlinear interactions between variables when carrying out the optimization.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10407782.2011.627782</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1040-7782
ispartof Numerical heat transfer. Part A, Applications, 2011-11, Vol.60 (9), p.727-745
issn 1040-7782
1521-0634
language eng
recordid cdi_crossref_primary_10_1080_10407782_2011_627782
source Taylor and Francis Science and Technology Collection
subjects Algorithms
Combustion
Design optimization
Fluidized bed combustion
Heat transfer
Mathematical analysis
Mathematical models
Optimization
Optimization algorithms
Pore size
Porosity
Response surfaces
Simulation
title Design Optimization of a Two-Stage Porous Radiant Burner through Response Surface Modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Optimization%20of%20a%20Two-Stage%20Porous%20Radiant%20Burner%20through%20Response%20Surface%20Modeling&rft.jtitle=Numerical%20heat%20transfer.%20Part%20A,%20Applications&rft.au=Horsman,%20A.%20P.&rft.date=2011-11-01&rft.volume=60&rft.issue=9&rft.spage=727&rft.epage=745&rft.pages=727-745&rft.issn=1040-7782&rft.eissn=1521-0634&rft_id=info:doi/10.1080/10407782.2011.627782&rft_dat=%3Cproquest_cross%3E1671368354%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-31089116bfbb687d90173c250f1a0927e832e84a4983dd16e3a6afcec3084c533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=908518772&rft_id=info:pmid/&rfr_iscdi=true