Loading…
Explicit reconstruction of space- and time-dependent heat sources with integral transforms
This work addresses an explicit methodology based on integral transforms for the inverse problem of reconstructing space and time dependent heat sources. The basic idea is to perform an integral transformation of the heat conduction equation and obtain an explicit expression for the integral transfo...
Saved in:
Published in: | Numerical heat transfer. Part B, Fundamentals Fundamentals, 2021-04, Vol.79 (4), p.216-233 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c286t-7cc84f8eec230b6f57fa4d1e8c0cb0eb88d4a8621f0c5387b635a63d66d57e53 |
container_end_page | 233 |
container_issue | 4 |
container_start_page | 216 |
container_title | Numerical heat transfer. Part B, Fundamentals |
container_volume | 79 |
creator | Negreiros, Anny R. Knupp, Diego C. Abreu, Luiz A. S. Silva Neto, Antônio J. |
description | This work addresses an explicit methodology based on integral transforms for the inverse problem of reconstructing space and time dependent heat sources. The basic idea is to perform an integral transformation of the heat conduction equation and obtain an explicit expression for the integral transformed heat source in terms of the integral transformed temperatures. Once temperature measurements within the medium are available, they are transformed with the same kernel and readily employed in the derived expressions for the representation of the sought heat source as an eigenfunction expansion. In order to critically illustrate the approach, one- and two-dimensional examples are considered, with different functional forms of the sought heat source and different noise levels in the simulated experimental data. |
doi_str_mv | 10.1080/10407790.2020.1850148 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10407790_2020_1850148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494717446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-7cc84f8eec230b6f57fa4d1e8c0cb0eb88d4a8621f0c5387b635a63d66d57e53</originalsourceid><addsrcrecordid>eNp9UE1LAzEQXUTBWv0JQsDz1iSbzaY3pdQPKHjpyUvIZic2ZZusSUrtvzdL69W5zDC892beK4p7gmcEC_xIMMNNM8czimleiRoTJi6KCakpKTGn_DLPGVOOoOviJsYtzsUqNik-lz9Db7VNKID2Lqaw18l6h7xBcVAaSqRch5LdQdnBAK4Dl9AGVELR74OGiA42bZB1Cb6C6lEKykXjwy7eFldG9RHuzn1arF-W68Vbufp4fV88r0pNBU9lo7VgRgBoWuGWm7oxinUEhMa6xdAK0TElOCUG67oSTcurWvGq47yrG6irafFwkh2C_95DTHKbH3P5oqRszhrSMMYzqj6hdPAxBjByCHanwlESLMcU5V-KckxRnlPMvKcTz7rRlDr40HcyqWPvg8lWtY2y-l_iFy-XekI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494717446</pqid></control><display><type>article</type><title>Explicit reconstruction of space- and time-dependent heat sources with integral transforms</title><source>Taylor and Francis Science and Technology Collection</source><creator>Negreiros, Anny R. ; Knupp, Diego C. ; Abreu, Luiz A. S. ; Silva Neto, Antônio J.</creator><creatorcontrib>Negreiros, Anny R. ; Knupp, Diego C. ; Abreu, Luiz A. S. ; Silva Neto, Antônio J.</creatorcontrib><description>This work addresses an explicit methodology based on integral transforms for the inverse problem of reconstructing space and time dependent heat sources. The basic idea is to perform an integral transformation of the heat conduction equation and obtain an explicit expression for the integral transformed heat source in terms of the integral transformed temperatures. Once temperature measurements within the medium are available, they are transformed with the same kernel and readily employed in the derived expressions for the representation of the sought heat source as an eigenfunction expansion. In order to critically illustrate the approach, one- and two-dimensional examples are considered, with different functional forms of the sought heat source and different noise levels in the simulated experimental data.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/10407790.2020.1850148</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Conduction heating ; Conductive heat transfer ; Eigenvectors ; Heat sources ; Integral transforms ; Inverse problems ; Noise levels ; Time dependence</subject><ispartof>Numerical heat transfer. Part B, Fundamentals, 2021-04, Vol.79 (4), p.216-233</ispartof><rights>2020 Taylor & Francis Group, LLC 2020</rights><rights>2020 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-7cc84f8eec230b6f57fa4d1e8c0cb0eb88d4a8621f0c5387b635a63d66d57e53</cites><orcidid>0000-0001-9534-5623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Negreiros, Anny R.</creatorcontrib><creatorcontrib>Knupp, Diego C.</creatorcontrib><creatorcontrib>Abreu, Luiz A. S.</creatorcontrib><creatorcontrib>Silva Neto, Antônio J.</creatorcontrib><title>Explicit reconstruction of space- and time-dependent heat sources with integral transforms</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>This work addresses an explicit methodology based on integral transforms for the inverse problem of reconstructing space and time dependent heat sources. The basic idea is to perform an integral transformation of the heat conduction equation and obtain an explicit expression for the integral transformed heat source in terms of the integral transformed temperatures. Once temperature measurements within the medium are available, they are transformed with the same kernel and readily employed in the derived expressions for the representation of the sought heat source as an eigenfunction expansion. In order to critically illustrate the approach, one- and two-dimensional examples are considered, with different functional forms of the sought heat source and different noise levels in the simulated experimental data.</description><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Eigenvectors</subject><subject>Heat sources</subject><subject>Integral transforms</subject><subject>Inverse problems</subject><subject>Noise levels</subject><subject>Time dependence</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQXUTBWv0JQsDz1iSbzaY3pdQPKHjpyUvIZic2ZZusSUrtvzdL69W5zDC892beK4p7gmcEC_xIMMNNM8czimleiRoTJi6KCakpKTGn_DLPGVOOoOviJsYtzsUqNik-lz9Db7VNKID2Lqaw18l6h7xBcVAaSqRch5LdQdnBAK4Dl9AGVELR74OGiA42bZB1Cb6C6lEKykXjwy7eFldG9RHuzn1arF-W68Vbufp4fV88r0pNBU9lo7VgRgBoWuGWm7oxinUEhMa6xdAK0TElOCUG67oSTcurWvGq47yrG6irafFwkh2C_95DTHKbH3P5oqRszhrSMMYzqj6hdPAxBjByCHanwlESLMcU5V-KckxRnlPMvKcTz7rRlDr40HcyqWPvg8lWtY2y-l_iFy-XekI</recordid><startdate>20210403</startdate><enddate>20210403</enddate><creator>Negreiros, Anny R.</creator><creator>Knupp, Diego C.</creator><creator>Abreu, Luiz A. S.</creator><creator>Silva Neto, Antônio J.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9534-5623</orcidid></search><sort><creationdate>20210403</creationdate><title>Explicit reconstruction of space- and time-dependent heat sources with integral transforms</title><author>Negreiros, Anny R. ; Knupp, Diego C. ; Abreu, Luiz A. S. ; Silva Neto, Antônio J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-7cc84f8eec230b6f57fa4d1e8c0cb0eb88d4a8621f0c5387b635a63d66d57e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Eigenvectors</topic><topic>Heat sources</topic><topic>Integral transforms</topic><topic>Inverse problems</topic><topic>Noise levels</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Negreiros, Anny R.</creatorcontrib><creatorcontrib>Knupp, Diego C.</creatorcontrib><creatorcontrib>Abreu, Luiz A. S.</creatorcontrib><creatorcontrib>Silva Neto, Antônio J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Negreiros, Anny R.</au><au>Knupp, Diego C.</au><au>Abreu, Luiz A. S.</au><au>Silva Neto, Antônio J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit reconstruction of space- and time-dependent heat sources with integral transforms</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>2021-04-03</date><risdate>2021</risdate><volume>79</volume><issue>4</issue><spage>216</spage><epage>233</epage><pages>216-233</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><abstract>This work addresses an explicit methodology based on integral transforms for the inverse problem of reconstructing space and time dependent heat sources. The basic idea is to perform an integral transformation of the heat conduction equation and obtain an explicit expression for the integral transformed heat source in terms of the integral transformed temperatures. Once temperature measurements within the medium are available, they are transformed with the same kernel and readily employed in the derived expressions for the representation of the sought heat source as an eigenfunction expansion. In order to critically illustrate the approach, one- and two-dimensional examples are considered, with different functional forms of the sought heat source and different noise levels in the simulated experimental data.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/10407790.2020.1850148</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9534-5623</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7790 |
ispartof | Numerical heat transfer. Part B, Fundamentals, 2021-04, Vol.79 (4), p.216-233 |
issn | 1040-7790 1521-0626 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10407790_2020_1850148 |
source | Taylor and Francis Science and Technology Collection |
subjects | Conduction heating Conductive heat transfer Eigenvectors Heat sources Integral transforms Inverse problems Noise levels Time dependence |
title | Explicit reconstruction of space- and time-dependent heat sources with integral transforms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20reconstruction%20of%20space-%20and%20time-dependent%20heat%20sources%20with%20integral%20transforms&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=Negreiros,%20Anny%20R.&rft.date=2021-04-03&rft.volume=79&rft.issue=4&rft.spage=216&rft.epage=233&rft.pages=216-233&rft.issn=1040-7790&rft.eissn=1521-0626&rft_id=info:doi/10.1080/10407790.2020.1850148&rft_dat=%3Cproquest_cross%3E2494717446%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-7cc84f8eec230b6f57fa4d1e8c0cb0eb88d4a8621f0c5387b635a63d66d57e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494717446&rft_id=info:pmid/&rfr_iscdi=true |