Loading…

Explicit reconstruction of space- and time-dependent heat sources with integral transforms

This work addresses an explicit methodology based on integral transforms for the inverse problem of reconstructing space and time dependent heat sources. The basic idea is to perform an integral transformation of the heat conduction equation and obtain an explicit expression for the integral transfo...

Full description

Saved in:
Bibliographic Details
Published in:Numerical heat transfer. Part B, Fundamentals Fundamentals, 2021-04, Vol.79 (4), p.216-233
Main Authors: Negreiros, Anny R., Knupp, Diego C., Abreu, Luiz A. S., Silva Neto, Antônio J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c286t-7cc84f8eec230b6f57fa4d1e8c0cb0eb88d4a8621f0c5387b635a63d66d57e53
container_end_page 233
container_issue 4
container_start_page 216
container_title Numerical heat transfer. Part B, Fundamentals
container_volume 79
creator Negreiros, Anny R.
Knupp, Diego C.
Abreu, Luiz A. S.
Silva Neto, Antônio J.
description This work addresses an explicit methodology based on integral transforms for the inverse problem of reconstructing space and time dependent heat sources. The basic idea is to perform an integral transformation of the heat conduction equation and obtain an explicit expression for the integral transformed heat source in terms of the integral transformed temperatures. Once temperature measurements within the medium are available, they are transformed with the same kernel and readily employed in the derived expressions for the representation of the sought heat source as an eigenfunction expansion. In order to critically illustrate the approach, one- and two-dimensional examples are considered, with different functional forms of the sought heat source and different noise levels in the simulated experimental data.
doi_str_mv 10.1080/10407790.2020.1850148
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10407790_2020_1850148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494717446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-7cc84f8eec230b6f57fa4d1e8c0cb0eb88d4a8621f0c5387b635a63d66d57e53</originalsourceid><addsrcrecordid>eNp9UE1LAzEQXUTBWv0JQsDz1iSbzaY3pdQPKHjpyUvIZic2ZZusSUrtvzdL69W5zDC892beK4p7gmcEC_xIMMNNM8czimleiRoTJi6KCakpKTGn_DLPGVOOoOviJsYtzsUqNik-lz9Db7VNKID2Lqaw18l6h7xBcVAaSqRch5LdQdnBAK4Dl9AGVELR74OGiA42bZB1Cb6C6lEKykXjwy7eFldG9RHuzn1arF-W68Vbufp4fV88r0pNBU9lo7VgRgBoWuGWm7oxinUEhMa6xdAK0TElOCUG67oSTcurWvGq47yrG6irafFwkh2C_95DTHKbH3P5oqRszhrSMMYzqj6hdPAxBjByCHanwlESLMcU5V-KckxRnlPMvKcTz7rRlDr40HcyqWPvg8lWtY2y-l_iFy-XekI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494717446</pqid></control><display><type>article</type><title>Explicit reconstruction of space- and time-dependent heat sources with integral transforms</title><source>Taylor and Francis Science and Technology Collection</source><creator>Negreiros, Anny R. ; Knupp, Diego C. ; Abreu, Luiz A. S. ; Silva Neto, Antônio J.</creator><creatorcontrib>Negreiros, Anny R. ; Knupp, Diego C. ; Abreu, Luiz A. S. ; Silva Neto, Antônio J.</creatorcontrib><description>This work addresses an explicit methodology based on integral transforms for the inverse problem of reconstructing space and time dependent heat sources. The basic idea is to perform an integral transformation of the heat conduction equation and obtain an explicit expression for the integral transformed heat source in terms of the integral transformed temperatures. Once temperature measurements within the medium are available, they are transformed with the same kernel and readily employed in the derived expressions for the representation of the sought heat source as an eigenfunction expansion. In order to critically illustrate the approach, one- and two-dimensional examples are considered, with different functional forms of the sought heat source and different noise levels in the simulated experimental data.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/10407790.2020.1850148</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Conduction heating ; Conductive heat transfer ; Eigenvectors ; Heat sources ; Integral transforms ; Inverse problems ; Noise levels ; Time dependence</subject><ispartof>Numerical heat transfer. Part B, Fundamentals, 2021-04, Vol.79 (4), p.216-233</ispartof><rights>2020 Taylor &amp; Francis Group, LLC 2020</rights><rights>2020 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-7cc84f8eec230b6f57fa4d1e8c0cb0eb88d4a8621f0c5387b635a63d66d57e53</cites><orcidid>0000-0001-9534-5623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Negreiros, Anny R.</creatorcontrib><creatorcontrib>Knupp, Diego C.</creatorcontrib><creatorcontrib>Abreu, Luiz A. S.</creatorcontrib><creatorcontrib>Silva Neto, Antônio J.</creatorcontrib><title>Explicit reconstruction of space- and time-dependent heat sources with integral transforms</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>This work addresses an explicit methodology based on integral transforms for the inverse problem of reconstructing space and time dependent heat sources. The basic idea is to perform an integral transformation of the heat conduction equation and obtain an explicit expression for the integral transformed heat source in terms of the integral transformed temperatures. Once temperature measurements within the medium are available, they are transformed with the same kernel and readily employed in the derived expressions for the representation of the sought heat source as an eigenfunction expansion. In order to critically illustrate the approach, one- and two-dimensional examples are considered, with different functional forms of the sought heat source and different noise levels in the simulated experimental data.</description><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Eigenvectors</subject><subject>Heat sources</subject><subject>Integral transforms</subject><subject>Inverse problems</subject><subject>Noise levels</subject><subject>Time dependence</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQXUTBWv0JQsDz1iSbzaY3pdQPKHjpyUvIZic2ZZusSUrtvzdL69W5zDC892beK4p7gmcEC_xIMMNNM8czimleiRoTJi6KCakpKTGn_DLPGVOOoOviJsYtzsUqNik-lz9Db7VNKID2Lqaw18l6h7xBcVAaSqRch5LdQdnBAK4Dl9AGVELR74OGiA42bZB1Cb6C6lEKykXjwy7eFldG9RHuzn1arF-W68Vbufp4fV88r0pNBU9lo7VgRgBoWuGWm7oxinUEhMa6xdAK0TElOCUG67oSTcurWvGq47yrG6irafFwkh2C_95DTHKbH3P5oqRszhrSMMYzqj6hdPAxBjByCHanwlESLMcU5V-KckxRnlPMvKcTz7rRlDr40HcyqWPvg8lWtY2y-l_iFy-XekI</recordid><startdate>20210403</startdate><enddate>20210403</enddate><creator>Negreiros, Anny R.</creator><creator>Knupp, Diego C.</creator><creator>Abreu, Luiz A. S.</creator><creator>Silva Neto, Antônio J.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9534-5623</orcidid></search><sort><creationdate>20210403</creationdate><title>Explicit reconstruction of space- and time-dependent heat sources with integral transforms</title><author>Negreiros, Anny R. ; Knupp, Diego C. ; Abreu, Luiz A. S. ; Silva Neto, Antônio J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-7cc84f8eec230b6f57fa4d1e8c0cb0eb88d4a8621f0c5387b635a63d66d57e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Eigenvectors</topic><topic>Heat sources</topic><topic>Integral transforms</topic><topic>Inverse problems</topic><topic>Noise levels</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Negreiros, Anny R.</creatorcontrib><creatorcontrib>Knupp, Diego C.</creatorcontrib><creatorcontrib>Abreu, Luiz A. S.</creatorcontrib><creatorcontrib>Silva Neto, Antônio J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Negreiros, Anny R.</au><au>Knupp, Diego C.</au><au>Abreu, Luiz A. S.</au><au>Silva Neto, Antônio J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit reconstruction of space- and time-dependent heat sources with integral transforms</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>2021-04-03</date><risdate>2021</risdate><volume>79</volume><issue>4</issue><spage>216</spage><epage>233</epage><pages>216-233</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><abstract>This work addresses an explicit methodology based on integral transforms for the inverse problem of reconstructing space and time dependent heat sources. The basic idea is to perform an integral transformation of the heat conduction equation and obtain an explicit expression for the integral transformed heat source in terms of the integral transformed temperatures. Once temperature measurements within the medium are available, they are transformed with the same kernel and readily employed in the derived expressions for the representation of the sought heat source as an eigenfunction expansion. In order to critically illustrate the approach, one- and two-dimensional examples are considered, with different functional forms of the sought heat source and different noise levels in the simulated experimental data.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10407790.2020.1850148</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9534-5623</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-7790
ispartof Numerical heat transfer. Part B, Fundamentals, 2021-04, Vol.79 (4), p.216-233
issn 1040-7790
1521-0626
language eng
recordid cdi_crossref_primary_10_1080_10407790_2020_1850148
source Taylor and Francis Science and Technology Collection
subjects Conduction heating
Conductive heat transfer
Eigenvectors
Heat sources
Integral transforms
Inverse problems
Noise levels
Time dependence
title Explicit reconstruction of space- and time-dependent heat sources with integral transforms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20reconstruction%20of%20space-%20and%20time-dependent%20heat%20sources%20with%20integral%20transforms&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=Negreiros,%20Anny%20R.&rft.date=2021-04-03&rft.volume=79&rft.issue=4&rft.spage=216&rft.epage=233&rft.pages=216-233&rft.issn=1040-7790&rft.eissn=1521-0626&rft_id=info:doi/10.1080/10407790.2020.1850148&rft_dat=%3Cproquest_cross%3E2494717446%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-7cc84f8eec230b6f57fa4d1e8c0cb0eb88d4a8621f0c5387b635a63d66d57e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494717446&rft_id=info:pmid/&rfr_iscdi=true