Loading…

PHASES MODEL FOR BINARY-CONSTITUENT SOLID-LIQUID PHASE TRANSITION, PART 1: NUMERICAL METHOD

A PHASES (PHysicat Algorithm for Species-Energy Simulation) model was developed for applications to binary-constituent solid-liquid phase-transition problems. A control-volume-based finite-element formulation of the mixture continuum equations was employed in the solid, melt, and liquid regions. An...

Full description

Saved in:
Bibliographic Details
Published in:Numerical heat transfer. Part B, Fundamentals Fundamentals, 1995-09, Vol.28 (2), p.111-126
Main Authors: Naterer, G. F., Schneider, G. E.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c237t-9cbae63dc5a89ae577de79842c1db3fff76850329df1a1a1ee535cf6baa5b153
cites cdi_FETCH-LOGICAL-c237t-9cbae63dc5a89ae577de79842c1db3fff76850329df1a1a1ee535cf6baa5b153
container_end_page 126
container_issue 2
container_start_page 111
container_title Numerical heat transfer. Part B, Fundamentals
container_volume 28
creator Naterer, G. F.
Schneider, G. E.
description A PHASES (PHysicat Algorithm for Species-Energy Simulation) model was developed for applications to binary-constituent solid-liquid phase-transition problems. A control-volume-based finite-element formulation of the mixture continuum equations was employed in the solid, melt, and liquid regions. An implicit enthalpy-based procedure solved the species and energy conservation equations in conjunction with a phase iteration procedure and the binary phase diagram. The coupled multiphase mass-momentum equation set was solved with a simultaneous colocated variable technique. In this approach, the multiphase pressure-velocity coupling was completed by an implicit closure of the conservation and integration point mass-momentum transport equations instead of a segregated approach. In addition, a diffusion-based nonequilibrium model and an isotherm gradient (IG) procedure were developed for the simulation of nonequilibrium and interdendritic anisotropic conditions during phase transition.
doi_str_mv 10.1080/10407799508928824
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10407799508928824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10407799508928824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-9cbae63dc5a89ae577de79842c1db3fff76850329df1a1a1ee535cf6baa5b153</originalsourceid><addsrcrecordid>eNp1kFFPgzAUhRujiXP6A3zrDxBtKaXF-IKDuSZAJ3QPxgdSoE1mtmHKErN_L3O-Ge95uDe55zsPB4BbjO4x4ugBowAxFkUU8cjn3A_OwARTH3so9MPz8R7_3mhAl-BqGD7QOAEJJuB9uYirtIK5TNIMzmUJn0URl2_eTBaVEmqVFgpWMhOJl4nXlUjgDwBVGReVUEIWd3AZlwriR1is8rQUsziDeaoWMrkGF1ZvBnPzu6dAzVM1W3iZfDnavNYnbO9FbaNNSLqWah5pQxnrDIt44Le4a4i1loWcIuJHncV6lDGU0NaGjda0wZRMAT7Ftq4fBmds_enWW-0ONUb1sZz6Tzkj83Ri1jvbu63-6t2mq_f6sOmddXrXroea_I9_A7e4YsE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PHASES MODEL FOR BINARY-CONSTITUENT SOLID-LIQUID PHASE TRANSITION, PART 1: NUMERICAL METHOD</title><source>Taylor &amp; Francis Engineering, Computing &amp; Technology Archive</source><creator>Naterer, G. F. ; Schneider, G. E.</creator><creatorcontrib>Naterer, G. F. ; Schneider, G. E.</creatorcontrib><description>A PHASES (PHysicat Algorithm for Species-Energy Simulation) model was developed for applications to binary-constituent solid-liquid phase-transition problems. A control-volume-based finite-element formulation of the mixture continuum equations was employed in the solid, melt, and liquid regions. An implicit enthalpy-based procedure solved the species and energy conservation equations in conjunction with a phase iteration procedure and the binary phase diagram. The coupled multiphase mass-momentum equation set was solved with a simultaneous colocated variable technique. In this approach, the multiphase pressure-velocity coupling was completed by an implicit closure of the conservation and integration point mass-momentum transport equations instead of a segregated approach. In addition, a diffusion-based nonequilibrium model and an isotherm gradient (IG) procedure were developed for the simulation of nonequilibrium and interdendritic anisotropic conditions during phase transition.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/10407799508928824</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><ispartof>Numerical heat transfer. Part B, Fundamentals, 1995-09, Vol.28 (2), p.111-126</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237t-9cbae63dc5a89ae577de79842c1db3fff76850329df1a1a1ee535cf6baa5b153</citedby><cites>FETCH-LOGICAL-c237t-9cbae63dc5a89ae577de79842c1db3fff76850329df1a1a1ee535cf6baa5b153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10407799508928824$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10407799508928824$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59901,60690</link.rule.ids></links><search><creatorcontrib>Naterer, G. F.</creatorcontrib><creatorcontrib>Schneider, G. E.</creatorcontrib><title>PHASES MODEL FOR BINARY-CONSTITUENT SOLID-LIQUID PHASE TRANSITION, PART 1: NUMERICAL METHOD</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>A PHASES (PHysicat Algorithm for Species-Energy Simulation) model was developed for applications to binary-constituent solid-liquid phase-transition problems. A control-volume-based finite-element formulation of the mixture continuum equations was employed in the solid, melt, and liquid regions. An implicit enthalpy-based procedure solved the species and energy conservation equations in conjunction with a phase iteration procedure and the binary phase diagram. The coupled multiphase mass-momentum equation set was solved with a simultaneous colocated variable technique. In this approach, the multiphase pressure-velocity coupling was completed by an implicit closure of the conservation and integration point mass-momentum transport equations instead of a segregated approach. In addition, a diffusion-based nonequilibrium model and an isotherm gradient (IG) procedure were developed for the simulation of nonequilibrium and interdendritic anisotropic conditions during phase transition.</description><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kFFPgzAUhRujiXP6A3zrDxBtKaXF-IKDuSZAJ3QPxgdSoE1mtmHKErN_L3O-Ge95uDe55zsPB4BbjO4x4ugBowAxFkUU8cjn3A_OwARTH3so9MPz8R7_3mhAl-BqGD7QOAEJJuB9uYirtIK5TNIMzmUJn0URl2_eTBaVEmqVFgpWMhOJl4nXlUjgDwBVGReVUEIWd3AZlwriR1is8rQUsziDeaoWMrkGF1ZvBnPzu6dAzVM1W3iZfDnavNYnbO9FbaNNSLqWah5pQxnrDIt44Le4a4i1loWcIuJHncV6lDGU0NaGjda0wZRMAT7Ftq4fBmds_enWW-0ONUb1sZz6Tzkj83Ri1jvbu63-6t2mq_f6sOmddXrXroea_I9_A7e4YsE</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Naterer, G. F.</creator><creator>Schneider, G. E.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950901</creationdate><title>PHASES MODEL FOR BINARY-CONSTITUENT SOLID-LIQUID PHASE TRANSITION, PART 1: NUMERICAL METHOD</title><author>Naterer, G. F. ; Schneider, G. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-9cbae63dc5a89ae577de79842c1db3fff76850329df1a1a1ee535cf6baa5b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naterer, G. F.</creatorcontrib><creatorcontrib>Schneider, G. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naterer, G. F.</au><au>Schneider, G. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PHASES MODEL FOR BINARY-CONSTITUENT SOLID-LIQUID PHASE TRANSITION, PART 1: NUMERICAL METHOD</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>1995-09-01</date><risdate>1995</risdate><volume>28</volume><issue>2</issue><spage>111</spage><epage>126</epage><pages>111-126</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><abstract>A PHASES (PHysicat Algorithm for Species-Energy Simulation) model was developed for applications to binary-constituent solid-liquid phase-transition problems. A control-volume-based finite-element formulation of the mixture continuum equations was employed in the solid, melt, and liquid regions. An implicit enthalpy-based procedure solved the species and energy conservation equations in conjunction with a phase iteration procedure and the binary phase diagram. The coupled multiphase mass-momentum equation set was solved with a simultaneous colocated variable technique. In this approach, the multiphase pressure-velocity coupling was completed by an implicit closure of the conservation and integration point mass-momentum transport equations instead of a segregated approach. In addition, a diffusion-based nonequilibrium model and an isotherm gradient (IG) procedure were developed for the simulation of nonequilibrium and interdendritic anisotropic conditions during phase transition.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10407799508928824</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1040-7790
ispartof Numerical heat transfer. Part B, Fundamentals, 1995-09, Vol.28 (2), p.111-126
issn 1040-7790
1521-0626
language eng
recordid cdi_crossref_primary_10_1080_10407799508928824
source Taylor & Francis Engineering, Computing & Technology Archive
title PHASES MODEL FOR BINARY-CONSTITUENT SOLID-LIQUID PHASE TRANSITION, PART 1: NUMERICAL METHOD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PHASES%20MODEL%20FOR%20BINARY-CONSTITUENT%20SOLID-LIQUID%20PHASE%20TRANSITION,%20PART%201:%20NUMERICAL%20METHOD&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=Naterer,%20G.%20F.&rft.date=1995-09-01&rft.volume=28&rft.issue=2&rft.spage=111&rft.epage=126&rft.pages=111-126&rft.issn=1040-7790&rft.eissn=1521-0626&rft_id=info:doi/10.1080/10407799508928824&rft_dat=%3Ccrossref_infor%3E10_1080_10407799508928824%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237t-9cbae63dc5a89ae577de79842c1db3fff76850329df1a1a1ee535cf6baa5b153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true