Loading…

Absorption, metabolism and bioavailability of flavonoids: a review

Flavonoids are stored in various plants and widely presented in different kinds of food in variable amounts. Plant roots, stems, leaves, flowers and fruits are known to have high amounts of flavonoids. However, flavonoid aglycones are found less frequently in natural products, as it requires bioconv...

Full description

Saved in:
Bibliographic Details
Published in:Critical reviews in food science and nutrition 2022-10, Vol.62 (28), p.7730-7742
Main Authors: Chen, Lei, Cao, Hui, Huang, Qun, Xiao, Jianbo, Teng, Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flavonoids are stored in various plants and widely presented in different kinds of food in variable amounts. Plant roots, stems, leaves, flowers and fruits are known to have high amounts of flavonoids. However, flavonoid aglycones are found less frequently in natural products, as it requires bioconversion through bacteria, which provide β-glucosidase to convert them. Recently, flavonoids and its metabolites were applied in the prevention and treatment of various diseases such as cancers, obesity, diabetes, hypertension, hyperlipidemia, cardiovascular diseases, neurological disorders and osteoporosis in numerous studies. This review focused on absorption, activity, metabolism, and bioavailability of flavonoids. Also authors organized and collected newly-found reports of flavonoids and their absorption barriers of flavonoids in the gastrointestinal tract, providing the latest findings and evidence from the past decade. Particularly, nanoparticles delivery systems are emphasized regarding fabrication methods and their potential benefits on flavonoids. Moreover, the potential challenges of nanoparticles as delivery system for flavonoids in the gastrointestinal tract are also discussed.
ISSN:1040-8398
1549-7852
DOI:10.1080/10408398.2021.1917508