Loading…

Bootstrapping the conditional survival function estimator in the partial Koziol-Green model

In the partial Koziol-Green regression model, the lifetime variable may be censored by two types of censoring variables. One is called informative because it satisfies the Koziol-Green assumption on proportionality of hazards and the other one is general. Braekers and Veraverbeke proposed a non-para...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nonparametric statistics 2005-04, Vol.17 (3), p.299-318
Main Authors: Braekers, Roel, Veraverbeke, Noël
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c341t-12952173fbea068bcaf4d896c258a9b733dcc546070652d2dc46f45de71117513
container_end_page 318
container_issue 3
container_start_page 299
container_title Journal of nonparametric statistics
container_volume 17
creator Braekers, Roel
Veraverbeke, Noël
description In the partial Koziol-Green regression model, the lifetime variable may be censored by two types of censoring variables. One is called informative because it satisfies the Koziol-Green assumption on proportionality of hazards and the other one is general. Braekers and Veraverbeke proposed a non-parametric estimator for the conditional lifetime distribution and obtained a Gaussian approximation for the corresponding process. In the present paper, we propose an appropriate resampling scheme and show that this leads to a valid bootstrap approximation for the process.
doi_str_mv 10.1080/10485250500038330
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10485250500038330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10485250500038330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-12952173fbea068bcaf4d896c258a9b733dcc546070652d2dc46f45de71117513</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwANzyAoFdO86PxAUqKIhKXODEIXL9A0apHdluoX16UsqtQpx2tJpvdzSEnCNcINRwiVDUnHLgAMBqxuCAjBBokwNDPNzqos4HAz0mJzF-ACArGYzI6433KaYg-t66tyy960x6p2yy3okui8uwsqtBmKWT212mY7ILkXzIrPux9yIkOzge_cb6Lp8GrV228Ep3p-TIiC7qs985Ji93t8-T-3z2NH2YXM9yyQpMOdKGU6yYmWsBZT2XwhSqbkpJeS2aecWYkpIXJVRQcqqokkVpCq50hYgVRzYmuLsrg48xaNP2YcgY1i1Cu22n3WtnYKodY53xYSE-fehUm8S688EE4aSN-1SbvtJAXv1Lsr8ffwMsR32T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bootstrapping the conditional survival function estimator in the partial Koziol-Green model</title><source>Taylor and Francis Science and Technology Collection</source><creator>Braekers, Roel ; Veraverbeke, Noël</creator><creatorcontrib>Braekers, Roel ; Veraverbeke, Noël</creatorcontrib><description>In the partial Koziol-Green regression model, the lifetime variable may be censored by two types of censoring variables. One is called informative because it satisfies the Koziol-Green assumption on proportionality of hazards and the other one is general. Braekers and Veraverbeke proposed a non-parametric estimator for the conditional lifetime distribution and obtained a Gaussian approximation for the corresponding process. In the present paper, we propose an appropriate resampling scheme and show that this leads to a valid bootstrap approximation for the process.</description><identifier>ISSN: 1048-5252</identifier><identifier>EISSN: 1029-0311</identifier><identifier>DOI: 10.1080/10485250500038330</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Bootstrap ; Fixed design ; Informative censoring ; Nonparametric regression ; Proportional hazards ; Right censoring ; Weak convergence</subject><ispartof>Journal of nonparametric statistics, 2005-04, Vol.17 (3), p.299-318</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-12952173fbea068bcaf4d896c258a9b733dcc546070652d2dc46f45de71117513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Braekers, Roel</creatorcontrib><creatorcontrib>Veraverbeke, Noël</creatorcontrib><title>Bootstrapping the conditional survival function estimator in the partial Koziol-Green model</title><title>Journal of nonparametric statistics</title><description>In the partial Koziol-Green regression model, the lifetime variable may be censored by two types of censoring variables. One is called informative because it satisfies the Koziol-Green assumption on proportionality of hazards and the other one is general. Braekers and Veraverbeke proposed a non-parametric estimator for the conditional lifetime distribution and obtained a Gaussian approximation for the corresponding process. In the present paper, we propose an appropriate resampling scheme and show that this leads to a valid bootstrap approximation for the process.</description><subject>Bootstrap</subject><subject>Fixed design</subject><subject>Informative censoring</subject><subject>Nonparametric regression</subject><subject>Proportional hazards</subject><subject>Right censoring</subject><subject>Weak convergence</subject><issn>1048-5252</issn><issn>1029-0311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwANzyAoFdO86PxAUqKIhKXODEIXL9A0apHdluoX16UsqtQpx2tJpvdzSEnCNcINRwiVDUnHLgAMBqxuCAjBBokwNDPNzqos4HAz0mJzF-ACArGYzI6433KaYg-t66tyy960x6p2yy3okui8uwsqtBmKWT212mY7ILkXzIrPux9yIkOzge_cb6Lp8GrV228Ep3p-TIiC7qs985Ji93t8-T-3z2NH2YXM9yyQpMOdKGU6yYmWsBZT2XwhSqbkpJeS2aecWYkpIXJVRQcqqokkVpCq50hYgVRzYmuLsrg48xaNP2YcgY1i1Cu22n3WtnYKodY53xYSE-fehUm8S688EE4aSN-1SbvtJAXv1Lsr8ffwMsR32T</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Braekers, Roel</creator><creator>Veraverbeke, Noël</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050401</creationdate><title>Bootstrapping the conditional survival function estimator in the partial Koziol-Green model</title><author>Braekers, Roel ; Veraverbeke, Noël</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-12952173fbea068bcaf4d896c258a9b733dcc546070652d2dc46f45de71117513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bootstrap</topic><topic>Fixed design</topic><topic>Informative censoring</topic><topic>Nonparametric regression</topic><topic>Proportional hazards</topic><topic>Right censoring</topic><topic>Weak convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braekers, Roel</creatorcontrib><creatorcontrib>Veraverbeke, Noël</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nonparametric statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braekers, Roel</au><au>Veraverbeke, Noël</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bootstrapping the conditional survival function estimator in the partial Koziol-Green model</atitle><jtitle>Journal of nonparametric statistics</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>17</volume><issue>3</issue><spage>299</spage><epage>318</epage><pages>299-318</pages><issn>1048-5252</issn><eissn>1029-0311</eissn><abstract>In the partial Koziol-Green regression model, the lifetime variable may be censored by two types of censoring variables. One is called informative because it satisfies the Koziol-Green assumption on proportionality of hazards and the other one is general. Braekers and Veraverbeke proposed a non-parametric estimator for the conditional lifetime distribution and obtained a Gaussian approximation for the corresponding process. In the present paper, we propose an appropriate resampling scheme and show that this leads to a valid bootstrap approximation for the process.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/10485250500038330</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1048-5252
ispartof Journal of nonparametric statistics, 2005-04, Vol.17 (3), p.299-318
issn 1048-5252
1029-0311
language eng
recordid cdi_crossref_primary_10_1080_10485250500038330
source Taylor and Francis Science and Technology Collection
subjects Bootstrap
Fixed design
Informative censoring
Nonparametric regression
Proportional hazards
Right censoring
Weak convergence
title Bootstrapping the conditional survival function estimator in the partial Koziol-Green model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bootstrapping%20the%20conditional%20survival%20function%20estimator%20in%20the%20partial%20Koziol-Green%20model&rft.jtitle=Journal%20of%20nonparametric%20statistics&rft.au=Braekers,%20Roel&rft.date=2005-04-01&rft.volume=17&rft.issue=3&rft.spage=299&rft.epage=318&rft.pages=299-318&rft.issn=1048-5252&rft.eissn=1029-0311&rft_id=info:doi/10.1080/10485250500038330&rft_dat=%3Ccrossref_infor%3E10_1080_10485250500038330%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-12952173fbea068bcaf4d896c258a9b733dcc546070652d2dc46f45de71117513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true