Loading…
Nonparametric estimation of a time-varying GARCH model
In this paper, a non-stationary time-varying GARCH (tvGARCH) model has been introduced by allowing the parameters of a stationary GARCH model to vary as functions of time. It is shown that the tvGARCH process is locally stationary in the sense that it can be locally approximated by stationary GARCH...
Saved in:
Published in: | Journal of nonparametric statistics 2013-03, Vol.25 (1), p.33-52 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a non-stationary time-varying GARCH (tvGARCH) model has been introduced by allowing the parameters of a stationary GARCH model to vary as functions of time. It is shown that the tvGARCH process is locally stationary in the sense that it can be locally approximated by stationary GARCH processes at fixed time points. We develop a two-step local polynomial procedure for the estimation of the parameter functions of the proposed model. Several asymptotic properties of the estimators have been established, including the asymptotic optimality. It is found that the tvGARCH model performs better than many of the standard GARCH models for various real data sets. |
---|---|
ISSN: | 1048-5252 1029-0311 |
DOI: | 10.1080/10485252.2012.728600 |