Loading…

RNA-seq analysis identifies differentially expressed gene in different types of donkey skeletal muscles

The main component of donkey meat is skeletal muscle, and different muscle fibers have been found to be associated with meat quality. However, RNA-seq technology has yet to be used to profile the transcriptomic changes of different muscles of the donkey. In this study, the characterizations of diffe...

Full description

Saved in:
Bibliographic Details
Published in:Animal biotechnology 2023-09, Vol.34 (5), p.1786-1795
Main Authors: Chai, Wenqiong, Qu, Honglei, Ma, Qiugang, Zhu, Mingxia, Li, Mengmeng, Zhan, Yandong, Liu, Ziwen, Xu, Jing, Yao, Huanfen, Li, Zeyu, Wang, Changfa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main component of donkey meat is skeletal muscle, and different muscle fibers have been found to be associated with meat quality. However, RNA-seq technology has yet to be used to profile the transcriptomic changes of different muscles of the donkey. In this study, the characterizations of different muscles on the gene expression profiles of Dezhou donkey were obtained, the aim was to identify the important genes in donkey muscles, and aid in improving donkey meat quality via RNA-seq. In the donkey gluteus (DG) and donkey longissimus dorsi (DL) group, GO enrichment indicated that DEGs were mainly involved in the biological regulation and metabolic process, and KEGG analysis shows that a total of 427 DEGs were mapped to 216 KEGG pathways and 23 KEGG pathways were significantly enriched such as the ribosome, glycolysis/gluconeogenesis, glucagon signaling pathway and biosynthesis of amino acids pathways. Meanwhile, 504 DEGs were mapped to 223 KEGG pathways, in which 17 were significantly enriched including cardiac muscle contraction and oxytocin signaling pathway in donkey hamstring muscles (DH) and DL group. In addition, the tenderness in donkey meat might involve muscle fiber type and glucose metabolism, which might profit from the DEGs including MYH1, MYH7, TNNC1, TNNI3, TPM3, ALDOA, ENO3, and PGK1. The genes found in this study will provide some ideas for further understanding the molecular mechanism of donkey meat quality.
ISSN:1049-5398
1532-2378
1532-2378
DOI:10.1080/10495398.2022.2050920