Loading…

Homotopy 2-Types of Low Order

There is a well-known equivalence between the homotopy types of connected CW-spaces X with π n X = 0 for n ≠ 1, 2 and the quasi-isomorphism classes of crossed modules ∂: M → P [ Mac Lane and Whitehead 50 ]. When the homotopy groups π 1 X and π 2 X are finite, one can represent the homotopy type of X...

Full description

Saved in:
Bibliographic Details
Published in:Experimental mathematics 2014-10, Vol.23 (4), p.383-389
Main Authors: Ellis, Graham, Le, Luyen Van
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c307t-8e23fc1e3bb430b0e7b5869d069590c4a46e5f2ef19a99892bf34f90f33ca523
cites cdi_FETCH-LOGICAL-c307t-8e23fc1e3bb430b0e7b5869d069590c4a46e5f2ef19a99892bf34f90f33ca523
container_end_page 389
container_issue 4
container_start_page 383
container_title Experimental mathematics
container_volume 23
creator Ellis, Graham
Le, Luyen Van
description There is a well-known equivalence between the homotopy types of connected CW-spaces X with π n X = 0 for n ≠ 1, 2 and the quasi-isomorphism classes of crossed modules ∂: M → P [ Mac Lane and Whitehead 50 ]. When the homotopy groups π 1 X and π 2 X are finite, one can represent the homotopy type of X by a crossed module in which M and P are finite groups. We define the order of such a crossed module to be |∂| = |M| × |P|, and the order of a quasi-isomorphism class of crossed modules to be the least order among all crossed modules in the class. We then define the order of a homotopy 2-type X to be the order of the corresponding quasi-isomorphism class of crossed modules. In this paper, we describe a computer implementation that inputs a finite crossed module of reasonably small order and returns a quasi-isomorphic crossed module of least order. Underlying the function is a catalog of all quasi-isomorphism classes of order m ≤ 127, m ≠ 32, 64, 81, 96, and a catalog of all isomorphism classes of crossed modules of order m ≤ 255.
doi_str_mv 10.1080/10586458.2014.912059
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10586458_2014_912059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10586458_2014_912059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-8e23fc1e3bb430b0e7b5869d069590c4a46e5f2ef19a99892bf34f90f33ca523</originalsourceid><addsrcrecordid>eNp9j81KxDAUhYMoOI6-gUJfIOPNXyd3JTKoIxRm04W7kLYJVNpJSQpD396W6tbVPYvvHO5HyCODHQMNzwyUzqXSOw5M7pBxUHhFNgylpKjg63rOM0IX5pbcpfQNM6hQb8jTMfRhDMOUcVpOg0tZ8FkRLtkpNi7ekxtvu-Qefu-WlO9v5eFIi9PH5-G1oLWA_Ui148LXzImqkgIqcPtqfggbyFEh1NLK3CnPnWdoETXyygvpEbwQtVVcbIlcZ-sYUorOmyG2vY2TYWAWQ_NnaBZDsxrOtZe11p59iL29hNg1ZrRTF6KP9ly3yYh_F34AtrNVig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homotopy 2-Types of Low Order</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Ellis, Graham ; Le, Luyen Van</creator><creatorcontrib>Ellis, Graham ; Le, Luyen Van</creatorcontrib><description>There is a well-known equivalence between the homotopy types of connected CW-spaces X with π n X = 0 for n ≠ 1, 2 and the quasi-isomorphism classes of crossed modules ∂: M → P [ Mac Lane and Whitehead 50 ]. When the homotopy groups π 1 X and π 2 X are finite, one can represent the homotopy type of X by a crossed module in which M and P are finite groups. We define the order of such a crossed module to be |∂| = |M| × |P|, and the order of a quasi-isomorphism class of crossed modules to be the least order among all crossed modules in the class. We then define the order of a homotopy 2-type X to be the order of the corresponding quasi-isomorphism class of crossed modules. In this paper, we describe a computer implementation that inputs a finite crossed module of reasonably small order and returns a quasi-isomorphic crossed module of least order. Underlying the function is a catalog of all quasi-isomorphism classes of order m ≤ 127, m ≠ 32, 64, 81, 96, and a catalog of all isomorphism classes of crossed modules of order m ≤ 255.</description><identifier>ISSN: 1058-6458</identifier><identifier>EISSN: 1944-950X</identifier><identifier>DOI: 10.1080/10586458.2014.912059</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>crossed module ; homotopy 2-type ; quasi-isomorphism</subject><ispartof>Experimental mathematics, 2014-10, Vol.23 (4), p.383-389</ispartof><rights>Copyright © Taylor &amp; Francis Group, LLC 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-8e23fc1e3bb430b0e7b5869d069590c4a46e5f2ef19a99892bf34f90f33ca523</citedby><cites>FETCH-LOGICAL-c307t-8e23fc1e3bb430b0e7b5869d069590c4a46e5f2ef19a99892bf34f90f33ca523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><creatorcontrib>Ellis, Graham</creatorcontrib><creatorcontrib>Le, Luyen Van</creatorcontrib><title>Homotopy 2-Types of Low Order</title><title>Experimental mathematics</title><description>There is a well-known equivalence between the homotopy types of connected CW-spaces X with π n X = 0 for n ≠ 1, 2 and the quasi-isomorphism classes of crossed modules ∂: M → P [ Mac Lane and Whitehead 50 ]. When the homotopy groups π 1 X and π 2 X are finite, one can represent the homotopy type of X by a crossed module in which M and P are finite groups. We define the order of such a crossed module to be |∂| = |M| × |P|, and the order of a quasi-isomorphism class of crossed modules to be the least order among all crossed modules in the class. We then define the order of a homotopy 2-type X to be the order of the corresponding quasi-isomorphism class of crossed modules. In this paper, we describe a computer implementation that inputs a finite crossed module of reasonably small order and returns a quasi-isomorphic crossed module of least order. Underlying the function is a catalog of all quasi-isomorphism classes of order m ≤ 127, m ≠ 32, 64, 81, 96, and a catalog of all isomorphism classes of crossed modules of order m ≤ 255.</description><subject>crossed module</subject><subject>homotopy 2-type</subject><subject>quasi-isomorphism</subject><issn>1058-6458</issn><issn>1944-950X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9j81KxDAUhYMoOI6-gUJfIOPNXyd3JTKoIxRm04W7kLYJVNpJSQpD396W6tbVPYvvHO5HyCODHQMNzwyUzqXSOw5M7pBxUHhFNgylpKjg63rOM0IX5pbcpfQNM6hQb8jTMfRhDMOUcVpOg0tZ8FkRLtkpNi7ekxtvu-Qefu-WlO9v5eFIi9PH5-G1oLWA_Ui148LXzImqkgIqcPtqfggbyFEh1NLK3CnPnWdoETXyygvpEbwQtVVcbIlcZ-sYUorOmyG2vY2TYWAWQ_NnaBZDsxrOtZe11p59iL29hNg1ZrRTF6KP9ly3yYh_F34AtrNVig</recordid><startdate>20141002</startdate><enddate>20141002</enddate><creator>Ellis, Graham</creator><creator>Le, Luyen Van</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141002</creationdate><title>Homotopy 2-Types of Low Order</title><author>Ellis, Graham ; Le, Luyen Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-8e23fc1e3bb430b0e7b5869d069590c4a46e5f2ef19a99892bf34f90f33ca523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>crossed module</topic><topic>homotopy 2-type</topic><topic>quasi-isomorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellis, Graham</creatorcontrib><creatorcontrib>Le, Luyen Van</creatorcontrib><collection>CrossRef</collection><jtitle>Experimental mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellis, Graham</au><au>Le, Luyen Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homotopy 2-Types of Low Order</atitle><jtitle>Experimental mathematics</jtitle><date>2014-10-02</date><risdate>2014</risdate><volume>23</volume><issue>4</issue><spage>383</spage><epage>389</epage><pages>383-389</pages><issn>1058-6458</issn><eissn>1944-950X</eissn><abstract>There is a well-known equivalence between the homotopy types of connected CW-spaces X with π n X = 0 for n ≠ 1, 2 and the quasi-isomorphism classes of crossed modules ∂: M → P [ Mac Lane and Whitehead 50 ]. When the homotopy groups π 1 X and π 2 X are finite, one can represent the homotopy type of X by a crossed module in which M and P are finite groups. We define the order of such a crossed module to be |∂| = |M| × |P|, and the order of a quasi-isomorphism class of crossed modules to be the least order among all crossed modules in the class. We then define the order of a homotopy 2-type X to be the order of the corresponding quasi-isomorphism class of crossed modules. In this paper, we describe a computer implementation that inputs a finite crossed module of reasonably small order and returns a quasi-isomorphic crossed module of least order. Underlying the function is a catalog of all quasi-isomorphism classes of order m ≤ 127, m ≠ 32, 64, 81, 96, and a catalog of all isomorphism classes of crossed modules of order m ≤ 255.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/10586458.2014.912059</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1058-6458
ispartof Experimental mathematics, 2014-10, Vol.23 (4), p.383-389
issn 1058-6458
1944-950X
language eng
recordid cdi_crossref_primary_10_1080_10586458_2014_912059
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects crossed module
homotopy 2-type
quasi-isomorphism
title Homotopy 2-Types of Low Order
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homotopy%202-Types%20of%20Low%20Order&rft.jtitle=Experimental%20mathematics&rft.au=Ellis,%20Graham&rft.date=2014-10-02&rft.volume=23&rft.issue=4&rft.spage=383&rft.epage=389&rft.pages=383-389&rft.issn=1058-6458&rft.eissn=1944-950X&rft_id=info:doi/10.1080/10586458.2014.912059&rft_dat=%3Ccrossref_infor%3E10_1080_10586458_2014_912059%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-8e23fc1e3bb430b0e7b5869d069590c4a46e5f2ef19a99892bf34f90f33ca523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true