Loading…

Random Point Sets on the Sphere-Hole Radii, Covering, and Separation

Geometric properties of N random points distributed independently and uniformly on the unit sphere with respect to surface area measure are obtained and several related conjectures are posed. In particular, we derive asymptotics (as N → ∞) for the expected moments of the radii of spherical caps asso...

Full description

Saved in:
Bibliographic Details
Published in:Experimental mathematics 2018-01, Vol.27 (1), p.62-81
Main Authors: Brauchart, J. S., Reznikov, A. B., Saff, E. B., Sloan, I. H., Wang, Y. G., Womersley, R. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83
cites cdi_FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83
container_end_page 81
container_issue 1
container_start_page 62
container_title Experimental mathematics
container_volume 27
creator Brauchart, J. S.
Reznikov, A. B.
Saff, E. B.
Sloan, I. H.
Wang, Y. G.
Womersley, R. S.
description Geometric properties of N random points distributed independently and uniformly on the unit sphere with respect to surface area measure are obtained and several related conjectures are posed. In particular, we derive asymptotics (as N → ∞) for the expected moments of the radii of spherical caps associated with the facets of the convex hull of N random points on . We provide conjectures for the asymptotic distribution of the scaled radii of these spherical caps and the expected value of the largest of these radii (the covering radius). Numerical evidence is included to support these conjectures. Furthermore, utilizing the extreme law for pairwise angles of Cai et al., we derive precise asymptotics for the expected separation of random points on .
doi_str_mv 10.1080/10586458.2016.1226209
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10586458_2016_1226209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10586458_2016_1226209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKuPIOQBOvVm8js7pf5UKCitgruQmUlsZJqUZFD69k5p3bq6d3HOtzgIXROYElBwQ4ArwbialkDElJSlKKE6QSNSMVZUHD5Oh39gij10ji5y_gIgjFdqhO6XJrRxg1-jDz1e2T7jGHC_tni1Xdtki3nsLF6a1vsJnsVvm3z4nOBBGuCtSab3MVyiM2e6bK-Od4zeHx_eZvNi8fL0PLtbFA3lsi8IISClqJkTrWq4lYS5UlBOa6mcYS0I4WpRK9ta6ZyUljpDlaSN5MCdVXSM-GG3STHnZJ3eJr8xaacJ6H0K_ZdC71PoY4rBuz14PriYNuYnpq7Vvdl1MblkQuOzpv9P_AL2ZWSO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random Point Sets on the Sphere-Hole Radii, Covering, and Separation</title><source>Taylor and Francis Science and Technology Collection</source><creator>Brauchart, J. S. ; Reznikov, A. B. ; Saff, E. B. ; Sloan, I. H. ; Wang, Y. G. ; Womersley, R. S.</creator><creatorcontrib>Brauchart, J. S. ; Reznikov, A. B. ; Saff, E. B. ; Sloan, I. H. ; Wang, Y. G. ; Womersley, R. S.</creatorcontrib><description>Geometric properties of N random points distributed independently and uniformly on the unit sphere with respect to surface area measure are obtained and several related conjectures are posed. In particular, we derive asymptotics (as N → ∞) for the expected moments of the radii of spherical caps associated with the facets of the convex hull of N random points on . We provide conjectures for the asymptotic distribution of the scaled radii of these spherical caps and the expected value of the largest of these radii (the covering radius). Numerical evidence is included to support these conjectures. Furthermore, utilizing the extreme law for pairwise angles of Cai et al., we derive precise asymptotics for the expected separation of random points on .</description><identifier>ISSN: 1058-6458</identifier><identifier>EISSN: 1944-950X</identifier><identifier>DOI: 10.1080/10586458.2016.1226209</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>covering radius ; moments of hole radii ; point separation ; Primary 52C17 ; random polytopes ; Secondary 60D05 ; spherical random points</subject><ispartof>Experimental mathematics, 2018-01, Vol.27 (1), p.62-81</ispartof><rights>2018 Taylor &amp; Francis 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83</citedby><cites>FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83</cites><orcidid>0000-0002-7450-0273 ; 0000-0002-1271-6001 ; 0000-0003-4815-8475 ; 0000-0003-0603-989X ; 0000-0003-3769-0538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Brauchart, J. S.</creatorcontrib><creatorcontrib>Reznikov, A. B.</creatorcontrib><creatorcontrib>Saff, E. B.</creatorcontrib><creatorcontrib>Sloan, I. H.</creatorcontrib><creatorcontrib>Wang, Y. G.</creatorcontrib><creatorcontrib>Womersley, R. S.</creatorcontrib><title>Random Point Sets on the Sphere-Hole Radii, Covering, and Separation</title><title>Experimental mathematics</title><description>Geometric properties of N random points distributed independently and uniformly on the unit sphere with respect to surface area measure are obtained and several related conjectures are posed. In particular, we derive asymptotics (as N → ∞) for the expected moments of the radii of spherical caps associated with the facets of the convex hull of N random points on . We provide conjectures for the asymptotic distribution of the scaled radii of these spherical caps and the expected value of the largest of these radii (the covering radius). Numerical evidence is included to support these conjectures. Furthermore, utilizing the extreme law for pairwise angles of Cai et al., we derive precise asymptotics for the expected separation of random points on .</description><subject>covering radius</subject><subject>moments of hole radii</subject><subject>point separation</subject><subject>Primary 52C17</subject><subject>random polytopes</subject><subject>Secondary 60D05</subject><subject>spherical random points</subject><issn>1058-6458</issn><issn>1944-950X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKuPIOQBOvVm8js7pf5UKCitgruQmUlsZJqUZFD69k5p3bq6d3HOtzgIXROYElBwQ4ArwbialkDElJSlKKE6QSNSMVZUHD5Oh39gij10ji5y_gIgjFdqhO6XJrRxg1-jDz1e2T7jGHC_tni1Xdtki3nsLF6a1vsJnsVvm3z4nOBBGuCtSab3MVyiM2e6bK-Od4zeHx_eZvNi8fL0PLtbFA3lsi8IISClqJkTrWq4lYS5UlBOa6mcYS0I4WpRK9ta6ZyUljpDlaSN5MCdVXSM-GG3STHnZJ3eJr8xaacJ6H0K_ZdC71PoY4rBuz14PriYNuYnpq7Vvdl1MblkQuOzpv9P_AL2ZWSO</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>Brauchart, J. S.</creator><creator>Reznikov, A. B.</creator><creator>Saff, E. B.</creator><creator>Sloan, I. H.</creator><creator>Wang, Y. G.</creator><creator>Womersley, R. S.</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7450-0273</orcidid><orcidid>https://orcid.org/0000-0002-1271-6001</orcidid><orcidid>https://orcid.org/0000-0003-4815-8475</orcidid><orcidid>https://orcid.org/0000-0003-0603-989X</orcidid><orcidid>https://orcid.org/0000-0003-3769-0538</orcidid></search><sort><creationdate>20180102</creationdate><title>Random Point Sets on the Sphere-Hole Radii, Covering, and Separation</title><author>Brauchart, J. S. ; Reznikov, A. B. ; Saff, E. B. ; Sloan, I. H. ; Wang, Y. G. ; Womersley, R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>covering radius</topic><topic>moments of hole radii</topic><topic>point separation</topic><topic>Primary 52C17</topic><topic>random polytopes</topic><topic>Secondary 60D05</topic><topic>spherical random points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brauchart, J. S.</creatorcontrib><creatorcontrib>Reznikov, A. B.</creatorcontrib><creatorcontrib>Saff, E. B.</creatorcontrib><creatorcontrib>Sloan, I. H.</creatorcontrib><creatorcontrib>Wang, Y. G.</creatorcontrib><creatorcontrib>Womersley, R. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Experimental mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brauchart, J. S.</au><au>Reznikov, A. B.</au><au>Saff, E. B.</au><au>Sloan, I. H.</au><au>Wang, Y. G.</au><au>Womersley, R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Point Sets on the Sphere-Hole Radii, Covering, and Separation</atitle><jtitle>Experimental mathematics</jtitle><date>2018-01-02</date><risdate>2018</risdate><volume>27</volume><issue>1</issue><spage>62</spage><epage>81</epage><pages>62-81</pages><issn>1058-6458</issn><eissn>1944-950X</eissn><abstract>Geometric properties of N random points distributed independently and uniformly on the unit sphere with respect to surface area measure are obtained and several related conjectures are posed. In particular, we derive asymptotics (as N → ∞) for the expected moments of the radii of spherical caps associated with the facets of the convex hull of N random points on . We provide conjectures for the asymptotic distribution of the scaled radii of these spherical caps and the expected value of the largest of these radii (the covering radius). Numerical evidence is included to support these conjectures. Furthermore, utilizing the extreme law for pairwise angles of Cai et al., we derive precise asymptotics for the expected separation of random points on .</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/10586458.2016.1226209</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7450-0273</orcidid><orcidid>https://orcid.org/0000-0002-1271-6001</orcidid><orcidid>https://orcid.org/0000-0003-4815-8475</orcidid><orcidid>https://orcid.org/0000-0003-0603-989X</orcidid><orcidid>https://orcid.org/0000-0003-3769-0538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-6458
ispartof Experimental mathematics, 2018-01, Vol.27 (1), p.62-81
issn 1058-6458
1944-950X
language eng
recordid cdi_crossref_primary_10_1080_10586458_2016_1226209
source Taylor and Francis Science and Technology Collection
subjects covering radius
moments of hole radii
point separation
Primary 52C17
random polytopes
Secondary 60D05
spherical random points
title Random Point Sets on the Sphere-Hole Radii, Covering, and Separation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Point%20Sets%20on%20the%20Sphere-Hole%20Radii,%20Covering,%20and%20Separation&rft.jtitle=Experimental%20mathematics&rft.au=Brauchart,%20J.%20S.&rft.date=2018-01-02&rft.volume=27&rft.issue=1&rft.spage=62&rft.epage=81&rft.pages=62-81&rft.issn=1058-6458&rft.eissn=1944-950X&rft_id=info:doi/10.1080/10586458.2016.1226209&rft_dat=%3Ccrossref_infor%3E10_1080_10586458_2016_1226209%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true