Loading…
Random Point Sets on the Sphere-Hole Radii, Covering, and Separation
Geometric properties of N random points distributed independently and uniformly on the unit sphere with respect to surface area measure are obtained and several related conjectures are posed. In particular, we derive asymptotics (as N → ∞) for the expected moments of the radii of spherical caps asso...
Saved in:
Published in: | Experimental mathematics 2018-01, Vol.27 (1), p.62-81 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83 |
container_end_page | 81 |
container_issue | 1 |
container_start_page | 62 |
container_title | Experimental mathematics |
container_volume | 27 |
creator | Brauchart, J. S. Reznikov, A. B. Saff, E. B. Sloan, I. H. Wang, Y. G. Womersley, R. S. |
description | Geometric properties of N random points distributed independently and uniformly on the unit sphere
with respect to surface area measure are obtained and several related conjectures are posed. In particular, we derive asymptotics (as N → ∞) for the expected moments of the radii of spherical caps associated with the facets of the convex hull of N random points on
. We provide conjectures for the asymptotic distribution of the scaled radii of these spherical caps and the expected value of the largest of these radii (the covering radius). Numerical evidence is included to support these conjectures. Furthermore, utilizing the extreme law for pairwise angles of Cai et al., we derive precise asymptotics for the expected separation of random points on
. |
doi_str_mv | 10.1080/10586458.2016.1226209 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10586458_2016_1226209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10586458_2016_1226209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKuPIOQBOvVm8js7pf5UKCitgruQmUlsZJqUZFD69k5p3bq6d3HOtzgIXROYElBwQ4ArwbialkDElJSlKKE6QSNSMVZUHD5Oh39gij10ji5y_gIgjFdqhO6XJrRxg1-jDz1e2T7jGHC_tni1Xdtki3nsLF6a1vsJnsVvm3z4nOBBGuCtSab3MVyiM2e6bK-Od4zeHx_eZvNi8fL0PLtbFA3lsi8IISClqJkTrWq4lYS5UlBOa6mcYS0I4WpRK9ta6ZyUljpDlaSN5MCdVXSM-GG3STHnZJ3eJr8xaacJ6H0K_ZdC71PoY4rBuz14PriYNuYnpq7Vvdl1MblkQuOzpv9P_AL2ZWSO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random Point Sets on the Sphere-Hole Radii, Covering, and Separation</title><source>Taylor and Francis Science and Technology Collection</source><creator>Brauchart, J. S. ; Reznikov, A. B. ; Saff, E. B. ; Sloan, I. H. ; Wang, Y. G. ; Womersley, R. S.</creator><creatorcontrib>Brauchart, J. S. ; Reznikov, A. B. ; Saff, E. B. ; Sloan, I. H. ; Wang, Y. G. ; Womersley, R. S.</creatorcontrib><description>Geometric properties of N random points distributed independently and uniformly on the unit sphere
with respect to surface area measure are obtained and several related conjectures are posed. In particular, we derive asymptotics (as N → ∞) for the expected moments of the radii of spherical caps associated with the facets of the convex hull of N random points on
. We provide conjectures for the asymptotic distribution of the scaled radii of these spherical caps and the expected value of the largest of these radii (the covering radius). Numerical evidence is included to support these conjectures. Furthermore, utilizing the extreme law for pairwise angles of Cai et al., we derive precise asymptotics for the expected separation of random points on
.</description><identifier>ISSN: 1058-6458</identifier><identifier>EISSN: 1944-950X</identifier><identifier>DOI: 10.1080/10586458.2016.1226209</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>covering radius ; moments of hole radii ; point separation ; Primary 52C17 ; random polytopes ; Secondary 60D05 ; spherical random points</subject><ispartof>Experimental mathematics, 2018-01, Vol.27 (1), p.62-81</ispartof><rights>2018 Taylor & Francis 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83</citedby><cites>FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83</cites><orcidid>0000-0002-7450-0273 ; 0000-0002-1271-6001 ; 0000-0003-4815-8475 ; 0000-0003-0603-989X ; 0000-0003-3769-0538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Brauchart, J. S.</creatorcontrib><creatorcontrib>Reznikov, A. B.</creatorcontrib><creatorcontrib>Saff, E. B.</creatorcontrib><creatorcontrib>Sloan, I. H.</creatorcontrib><creatorcontrib>Wang, Y. G.</creatorcontrib><creatorcontrib>Womersley, R. S.</creatorcontrib><title>Random Point Sets on the Sphere-Hole Radii, Covering, and Separation</title><title>Experimental mathematics</title><description>Geometric properties of N random points distributed independently and uniformly on the unit sphere
with respect to surface area measure are obtained and several related conjectures are posed. In particular, we derive asymptotics (as N → ∞) for the expected moments of the radii of spherical caps associated with the facets of the convex hull of N random points on
. We provide conjectures for the asymptotic distribution of the scaled radii of these spherical caps and the expected value of the largest of these radii (the covering radius). Numerical evidence is included to support these conjectures. Furthermore, utilizing the extreme law for pairwise angles of Cai et al., we derive precise asymptotics for the expected separation of random points on
.</description><subject>covering radius</subject><subject>moments of hole radii</subject><subject>point separation</subject><subject>Primary 52C17</subject><subject>random polytopes</subject><subject>Secondary 60D05</subject><subject>spherical random points</subject><issn>1058-6458</issn><issn>1944-950X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKuPIOQBOvVm8js7pf5UKCitgruQmUlsZJqUZFD69k5p3bq6d3HOtzgIXROYElBwQ4ArwbialkDElJSlKKE6QSNSMVZUHD5Oh39gij10ji5y_gIgjFdqhO6XJrRxg1-jDz1e2T7jGHC_tni1Xdtki3nsLF6a1vsJnsVvm3z4nOBBGuCtSab3MVyiM2e6bK-Od4zeHx_eZvNi8fL0PLtbFA3lsi8IISClqJkTrWq4lYS5UlBOa6mcYS0I4WpRK9ta6ZyUljpDlaSN5MCdVXSM-GG3STHnZJ3eJr8xaacJ6H0K_ZdC71PoY4rBuz14PriYNuYnpq7Vvdl1MblkQuOzpv9P_AL2ZWSO</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>Brauchart, J. S.</creator><creator>Reznikov, A. B.</creator><creator>Saff, E. B.</creator><creator>Sloan, I. H.</creator><creator>Wang, Y. G.</creator><creator>Womersley, R. S.</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7450-0273</orcidid><orcidid>https://orcid.org/0000-0002-1271-6001</orcidid><orcidid>https://orcid.org/0000-0003-4815-8475</orcidid><orcidid>https://orcid.org/0000-0003-0603-989X</orcidid><orcidid>https://orcid.org/0000-0003-3769-0538</orcidid></search><sort><creationdate>20180102</creationdate><title>Random Point Sets on the Sphere-Hole Radii, Covering, and Separation</title><author>Brauchart, J. S. ; Reznikov, A. B. ; Saff, E. B. ; Sloan, I. H. ; Wang, Y. G. ; Womersley, R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>covering radius</topic><topic>moments of hole radii</topic><topic>point separation</topic><topic>Primary 52C17</topic><topic>random polytopes</topic><topic>Secondary 60D05</topic><topic>spherical random points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brauchart, J. S.</creatorcontrib><creatorcontrib>Reznikov, A. B.</creatorcontrib><creatorcontrib>Saff, E. B.</creatorcontrib><creatorcontrib>Sloan, I. H.</creatorcontrib><creatorcontrib>Wang, Y. G.</creatorcontrib><creatorcontrib>Womersley, R. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Experimental mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brauchart, J. S.</au><au>Reznikov, A. B.</au><au>Saff, E. B.</au><au>Sloan, I. H.</au><au>Wang, Y. G.</au><au>Womersley, R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Point Sets on the Sphere-Hole Radii, Covering, and Separation</atitle><jtitle>Experimental mathematics</jtitle><date>2018-01-02</date><risdate>2018</risdate><volume>27</volume><issue>1</issue><spage>62</spage><epage>81</epage><pages>62-81</pages><issn>1058-6458</issn><eissn>1944-950X</eissn><abstract>Geometric properties of N random points distributed independently and uniformly on the unit sphere
with respect to surface area measure are obtained and several related conjectures are posed. In particular, we derive asymptotics (as N → ∞) for the expected moments of the radii of spherical caps associated with the facets of the convex hull of N random points on
. We provide conjectures for the asymptotic distribution of the scaled radii of these spherical caps and the expected value of the largest of these radii (the covering radius). Numerical evidence is included to support these conjectures. Furthermore, utilizing the extreme law for pairwise angles of Cai et al., we derive precise asymptotics for the expected separation of random points on
.</abstract><pub>Taylor & Francis</pub><doi>10.1080/10586458.2016.1226209</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7450-0273</orcidid><orcidid>https://orcid.org/0000-0002-1271-6001</orcidid><orcidid>https://orcid.org/0000-0003-4815-8475</orcidid><orcidid>https://orcid.org/0000-0003-0603-989X</orcidid><orcidid>https://orcid.org/0000-0003-3769-0538</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-6458 |
ispartof | Experimental mathematics, 2018-01, Vol.27 (1), p.62-81 |
issn | 1058-6458 1944-950X |
language | eng |
recordid | cdi_crossref_primary_10_1080_10586458_2016_1226209 |
source | Taylor and Francis Science and Technology Collection |
subjects | covering radius moments of hole radii point separation Primary 52C17 random polytopes Secondary 60D05 spherical random points |
title | Random Point Sets on the Sphere-Hole Radii, Covering, and Separation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Point%20Sets%20on%20the%20Sphere-Hole%20Radii,%20Covering,%20and%20Separation&rft.jtitle=Experimental%20mathematics&rft.au=Brauchart,%20J.%20S.&rft.date=2018-01-02&rft.volume=27&rft.issue=1&rft.spage=62&rft.epage=81&rft.pages=62-81&rft.issn=1058-6458&rft.eissn=1944-950X&rft_id=info:doi/10.1080/10586458.2016.1226209&rft_dat=%3Ccrossref_infor%3E10_1080_10586458_2016_1226209%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-1110776b4f6d8c5e714f26353b78fa4d066fb6b8ede7ff77e3fa3873c7505fe83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |