Loading…

Hyperbolic 24-Cell 4-Manifolds With One Cusp

In this article, we describe all the hyperbolic 24-cell 4-manifolds with exactly one cusp. There are four of these manifolds up to isometry. These manifolds are the first examples of one-cusped hyperbolic 4-manifolds of minimum volume.

Saved in:
Bibliographic Details
Published in:Experimental mathematics 2023-04, Vol.32 (2), p.269-279
Main Authors: Ratcliffe, John G., Tschantz, Steven T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-397cd241a0e011e0e2f1acf88a5c55005f9838a1a4f1b56b39817a1ab8a378b93
cites cdi_FETCH-LOGICAL-c310t-397cd241a0e011e0e2f1acf88a5c55005f9838a1a4f1b56b39817a1ab8a378b93
container_end_page 279
container_issue 2
container_start_page 269
container_title Experimental mathematics
container_volume 32
creator Ratcliffe, John G.
Tschantz, Steven T.
description In this article, we describe all the hyperbolic 24-cell 4-manifolds with exactly one cusp. There are four of these manifolds up to isometry. These manifolds are the first examples of one-cusped hyperbolic 4-manifolds of minimum volume.
doi_str_mv 10.1080/10586458.2021.1926010
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10586458_2021_1926010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10586458_2021_1926010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-397cd241a0e011e0e2f1acf88a5c55005f9838a1a4f1b56b39817a1ab8a378b93</originalsourceid><addsrcrecordid>eNp9j8FKxDAYhIMouK4-gtAHMPX_m6RNbkpRV1jZi6K3kKYJVrLtklSkb2-XXa-eZgZmBj5CrhFyBAm3CEKWXMi8gAJzVEUJCCdkgYpzqgR8nM5-7tB96ZxcpPQFgFwouSA3q2nnYjOEzmYFp7ULIeP0xfSdH0Kbsvdu_Mw2vcvq77S7JGfehOSujrokb48Pr_WKrjdPz_X9mlqGMFKmKtsWHA04QHTgCo_GeimNsEIACK8kkwYN99iIsmFKYjXHRhpWyUaxJRGHXxuHlKLzehe7rYmTRtB7ZP2HrPfI-og87-4Ou673Q9yanyGGVo9mCkP00fS2S5r9f_ELeo9a5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyperbolic 24-Cell 4-Manifolds With One Cusp</title><source>Taylor and Francis Science and Technology Collection</source><creator>Ratcliffe, John G. ; Tschantz, Steven T.</creator><creatorcontrib>Ratcliffe, John G. ; Tschantz, Steven T.</creatorcontrib><description>In this article, we describe all the hyperbolic 24-cell 4-manifolds with exactly one cusp. There are four of these manifolds up to isometry. These manifolds are the first examples of one-cusped hyperbolic 4-manifolds of minimum volume.</description><identifier>ISSN: 1058-6458</identifier><identifier>EISSN: 1944-950X</identifier><identifier>DOI: 10.1080/10586458.2021.1926010</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>24-cell ; hyperbolic 4-manifolds ; one cusp manifolds</subject><ispartof>Experimental mathematics, 2023-04, Vol.32 (2), p.269-279</ispartof><rights>2021 Taylor &amp; Francis Group, LLC 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-397cd241a0e011e0e2f1acf88a5c55005f9838a1a4f1b56b39817a1ab8a378b93</citedby><cites>FETCH-LOGICAL-c310t-397cd241a0e011e0e2f1acf88a5c55005f9838a1a4f1b56b39817a1ab8a378b93</cites><orcidid>0000-0002-6380-7026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ratcliffe, John G.</creatorcontrib><creatorcontrib>Tschantz, Steven T.</creatorcontrib><title>Hyperbolic 24-Cell 4-Manifolds With One Cusp</title><title>Experimental mathematics</title><description>In this article, we describe all the hyperbolic 24-cell 4-manifolds with exactly one cusp. There are four of these manifolds up to isometry. These manifolds are the first examples of one-cusped hyperbolic 4-manifolds of minimum volume.</description><subject>24-cell</subject><subject>hyperbolic 4-manifolds</subject><subject>one cusp manifolds</subject><issn>1058-6458</issn><issn>1944-950X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j8FKxDAYhIMouK4-gtAHMPX_m6RNbkpRV1jZi6K3kKYJVrLtklSkb2-XXa-eZgZmBj5CrhFyBAm3CEKWXMi8gAJzVEUJCCdkgYpzqgR8nM5-7tB96ZxcpPQFgFwouSA3q2nnYjOEzmYFp7ULIeP0xfSdH0Kbsvdu_Mw2vcvq77S7JGfehOSujrokb48Pr_WKrjdPz_X9mlqGMFKmKtsWHA04QHTgCo_GeimNsEIACK8kkwYN99iIsmFKYjXHRhpWyUaxJRGHXxuHlKLzehe7rYmTRtB7ZP2HrPfI-og87-4Ou673Q9yanyGGVo9mCkP00fS2S5r9f_ELeo9a5Q</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Ratcliffe, John G.</creator><creator>Tschantz, Steven T.</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6380-7026</orcidid></search><sort><creationdate>20230403</creationdate><title>Hyperbolic 24-Cell 4-Manifolds With One Cusp</title><author>Ratcliffe, John G. ; Tschantz, Steven T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-397cd241a0e011e0e2f1acf88a5c55005f9838a1a4f1b56b39817a1ab8a378b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>24-cell</topic><topic>hyperbolic 4-manifolds</topic><topic>one cusp manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratcliffe, John G.</creatorcontrib><creatorcontrib>Tschantz, Steven T.</creatorcontrib><collection>CrossRef</collection><jtitle>Experimental mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratcliffe, John G.</au><au>Tschantz, Steven T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic 24-Cell 4-Manifolds With One Cusp</atitle><jtitle>Experimental mathematics</jtitle><date>2023-04-03</date><risdate>2023</risdate><volume>32</volume><issue>2</issue><spage>269</spage><epage>279</epage><pages>269-279</pages><issn>1058-6458</issn><eissn>1944-950X</eissn><abstract>In this article, we describe all the hyperbolic 24-cell 4-manifolds with exactly one cusp. There are four of these manifolds up to isometry. These manifolds are the first examples of one-cusped hyperbolic 4-manifolds of minimum volume.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/10586458.2021.1926010</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6380-7026</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1058-6458
ispartof Experimental mathematics, 2023-04, Vol.32 (2), p.269-279
issn 1058-6458
1944-950X
language eng
recordid cdi_crossref_primary_10_1080_10586458_2021_1926010
source Taylor and Francis Science and Technology Collection
subjects 24-cell
hyperbolic 4-manifolds
one cusp manifolds
title Hyperbolic 24-Cell 4-Manifolds With One Cusp
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%2024-Cell%204-Manifolds%20With%20One%20Cusp&rft.jtitle=Experimental%20mathematics&rft.au=Ratcliffe,%20John%20G.&rft.date=2023-04-03&rft.volume=32&rft.issue=2&rft.spage=269&rft.epage=279&rft.pages=269-279&rft.issn=1058-6458&rft.eissn=1944-950X&rft_id=info:doi/10.1080/10586458.2021.1926010&rft_dat=%3Ccrossref_infor%3E10_1080_10586458_2021_1926010%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-397cd241a0e011e0e2f1acf88a5c55005f9838a1a4f1b56b39817a1ab8a378b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true