Loading…

Synthesis and Luminescent Properties of Novel Silicon-based Electroluminescent Copolymers with Ruthenium(II)-Chelated Complexes

A new class of silicon-based alternating copolymers having Ruthenium(II)-chelated complexes was synthesized to use as electroluminescent materials by Heck reaction between organosilicon divinyl monomers and Ru(II)-chelated monomers. The incorporation of organosilicon units with the aromatic or aliph...

Full description

Saved in:
Bibliographic Details
Published in:Molecular crystals and liquid crystals science and technology. Section A, Molecular crystals and liquid crystals Molecular crystals and liquid crystals, 2001-10, Vol.370 (1), p.387-390
Main Authors: Baek, Nam Seob, Kim, Hwan Kyu, Hwang, Gil Tae, Kim, Byeang Hyean
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new class of silicon-based alternating copolymers having Ruthenium(II)-chelated complexes was synthesized to use as electroluminescent materials by Heck reaction between organosilicon divinyl monomers and Ru(II)-chelated monomers. The incorporation of organosilicon units with the aromatic or aliphatic groups on the silicon atoms into ®-conjugated systems improved their processability and interrupted the ®-conjugation length. The maximum absorption wavelength (λ max ) of a non-chelated polymer (SiHMPhen) containing a phenanthroline (Phen) unit exhibited one strong bands at 305 nm for Phen units and a moderate peak around 350 nm for π-conjugated backbones. With an excitation wavelength of 360 nm, the PL spectrum of SiHMPhen exhibits a strong band at 420 nm in the blue region. Ru(II)-chelated copolymers showed strong absorption bands around 386-392 nm. Upon a photoexcitation with 400 nm, their PL spectra show a strong band at 430 nm in the blue region. The Ru(II)-chelated copolymers were thermally stable up to 300°C in air.
ISSN:1058-725X
DOI:10.1080/10587250108030112