Loading…
Poly(acrylic acid)-silicon Hybrids Prepared via a RAFT-mediated Process and Covalent Immobilization of Glucose Oxidase
A surface modification technique was proposed for the modification of silicon surface with glucose oxidase (GOD). The silicon surface was first graft copolymerized with acrylic acid (AAc) via surface-initiated reversible addition-fragmentation chain-transfer (RAFT)-mediated process. With the aid of...
Saved in:
Published in: | Journal of macromolecular science. Part A, Pure and applied chemistry Pure and applied chemistry, 2012-04, Vol.49 (4), p.316-320 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A surface modification technique was proposed for the modification of silicon surface with glucose oxidase (GOD). The silicon surface was first graft copolymerized with acrylic acid (AAc) via surface-initiated reversible addition-fragmentation chain-transfer (RAFT)-mediated process. With the aid of a water-soluble carbodiimide, GOD was then covalently immobilized on the silicon surface through the amide linkage between the amino group of GOD and the carboxyl group of the grafted AAc polymer. The changes in the surface composition after polymer grafting and enzyme immobilization on the silicon surface were investigated using X-ray photoelectron spectroscopy (XPS). The amount of GOD immobilized could be varied by changing the thickness of the polymer layer and the immobilization time. The GOD-functionalized silicon hybrids are potential useful in the application of the silicon-based biosensors. |
---|---|
ISSN: | 1060-1325 1520-5738 |
DOI: | 10.1080/10601325.2012.662059 |