Loading…
Online Updating of Survival Analysis
When large amounts of survival data arrive in streams, conventional estimation methods become computationally infeasible since they require access to all observations at each accumulation point. We develop online updating methods for carrying out survival analysis under the Cox proportional hazards...
Saved in:
Published in: | Journal of computational and graphical statistics 2021, Vol.30 (4), p.1209-1223 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73 |
container_end_page | 1223 |
container_issue | 4 |
container_start_page | 1209 |
container_title | Journal of computational and graphical statistics |
container_volume | 30 |
creator | Wu, Jing Chen, Ming-Hui Schifano, Elizabeth D. Yan, Jun |
description | When large amounts of survival data arrive in streams, conventional estimation methods become computationally infeasible since they require access to all observations at each accumulation point. We develop online updating methods for carrying out survival analysis under the Cox proportional hazards model in an online-update framework. Our methods are also applicable with time-dependent covariates. Specifically, we propose online-updating estimators as well as their standard errors for both the regression coefficients and the baseline hazard function. Extensive simulation studies are conducted to investigate the empirical performance of the proposed estimators. A large colon cancer dataset from the Surveillance, Epidemiology, and End Results program and a large venture capital dataset with time-dependent covariates are analyzed to demonstrate the utility of the proposed methodologies. Supplemental files for this article are available online. |
doi_str_mv | 10.1080/10618600.2020.1870481 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10618600_2020_1870481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638944458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1E1ZbSjwBaiR64pIwd_8sFUVXQVqrUA_RsTRynuPLai50s2m9fr3ZbAQdOHtm_eX4zj5B3FM4paPhEQVItAc4ZsHqlFXBNX5FjKlrVMEXF61pXptlCR-RNKY8AQGWnDslRK5iGTqljcnYXg49ucb8acPLxYZHGxfc5r_0aw-IiYtgUX96SgxFDcaf784Tcf_v64_K6ub27urm8uG0s7-TUCEp7bcd-GASzHSAXoHpgQ3WDDDtLlYTegkY52o5jjwqYba2CatOxUbUn5PNOdzX3SzdYF6eMwayyX2LemITe_P0S_U_zkNZGd1QqLqvAx71ATr9mVyaz9MW6EDC6NBfDZKs7zrnQFf3wD_qY5lwHLqYFpbUUnLJKiR1lcyolu_HFDAWzzcE852C2OZh9DrXv_Z-TvHQ9L74CX3aAj2PKS_ydchjMhJuQ8pgxWl99_P-PJ-YklcY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078865412</pqid></control><display><type>article</type><title>Online Updating of Survival Analysis</title><source>Taylor and Francis Science and Technology Collection</source><creator>Wu, Jing ; Chen, Ming-Hui ; Schifano, Elizabeth D. ; Yan, Jun</creator><creatorcontrib>Wu, Jing ; Chen, Ming-Hui ; Schifano, Elizabeth D. ; Yan, Jun</creatorcontrib><description>When large amounts of survival data arrive in streams, conventional estimation methods become computationally infeasible since they require access to all observations at each accumulation point. We develop online updating methods for carrying out survival analysis under the Cox proportional hazards model in an online-update framework. Our methods are also applicable with time-dependent covariates. Specifically, we propose online-updating estimators as well as their standard errors for both the regression coefficients and the baseline hazard function. Extensive simulation studies are conducted to investigate the empirical performance of the proposed estimators. A large colon cancer dataset from the Surveillance, Epidemiology, and End Results program and a large venture capital dataset with time-dependent covariates are analyzed to demonstrate the utility of the proposed methodologies. Supplemental files for this article are available online.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.2020.1870481</identifier><identifier>PMID: 35280977</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>and end results (SEER) ; Cox model ; Data compression ; Datasets ; epidemiology ; Estimators ; Piecewise constant baseline hazard ; Regression coefficients ; Statistical models ; Streaming survival data ; Surveillance ; Survival ; Time dependence</subject><ispartof>Journal of computational and graphical statistics, 2021, Vol.30 (4), p.1209-1223</ispartof><rights>2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021</rights><rights>2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73</citedby><cites>FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35280977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Chen, Ming-Hui</creatorcontrib><creatorcontrib>Schifano, Elizabeth D.</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><title>Online Updating of Survival Analysis</title><title>Journal of computational and graphical statistics</title><addtitle>J Comput Graph Stat</addtitle><description>When large amounts of survival data arrive in streams, conventional estimation methods become computationally infeasible since they require access to all observations at each accumulation point. We develop online updating methods for carrying out survival analysis under the Cox proportional hazards model in an online-update framework. Our methods are also applicable with time-dependent covariates. Specifically, we propose online-updating estimators as well as their standard errors for both the regression coefficients and the baseline hazard function. Extensive simulation studies are conducted to investigate the empirical performance of the proposed estimators. A large colon cancer dataset from the Surveillance, Epidemiology, and End Results program and a large venture capital dataset with time-dependent covariates are analyzed to demonstrate the utility of the proposed methodologies. Supplemental files for this article are available online.</description><subject>and end results (SEER)</subject><subject>Cox model</subject><subject>Data compression</subject><subject>Datasets</subject><subject>epidemiology</subject><subject>Estimators</subject><subject>Piecewise constant baseline hazard</subject><subject>Regression coefficients</subject><subject>Statistical models</subject><subject>Streaming survival data</subject><subject>Surveillance</subject><subject>Survival</subject><subject>Time dependence</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS1E1ZbSjwBaiR64pIwd_8sFUVXQVqrUA_RsTRynuPLai50s2m9fr3ZbAQdOHtm_eX4zj5B3FM4paPhEQVItAc4ZsHqlFXBNX5FjKlrVMEXF61pXptlCR-RNKY8AQGWnDslRK5iGTqljcnYXg49ucb8acPLxYZHGxfc5r_0aw-IiYtgUX96SgxFDcaf784Tcf_v64_K6ub27urm8uG0s7-TUCEp7bcd-GASzHSAXoHpgQ3WDDDtLlYTegkY52o5jjwqYba2CatOxUbUn5PNOdzX3SzdYF6eMwayyX2LemITe_P0S_U_zkNZGd1QqLqvAx71ATr9mVyaz9MW6EDC6NBfDZKs7zrnQFf3wD_qY5lwHLqYFpbUUnLJKiR1lcyolu_HFDAWzzcE852C2OZh9DrXv_Z-TvHQ9L74CX3aAj2PKS_ydchjMhJuQ8pgxWl99_P-PJ-YklcY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wu, Jing</creator><creator>Chen, Ming-Hui</creator><creator>Schifano, Elizabeth D.</creator><creator>Yan, Jun</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2021</creationdate><title>Online Updating of Survival Analysis</title><author>Wu, Jing ; Chen, Ming-Hui ; Schifano, Elizabeth D. ; Yan, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>and end results (SEER)</topic><topic>Cox model</topic><topic>Data compression</topic><topic>Datasets</topic><topic>epidemiology</topic><topic>Estimators</topic><topic>Piecewise constant baseline hazard</topic><topic>Regression coefficients</topic><topic>Statistical models</topic><topic>Streaming survival data</topic><topic>Surveillance</topic><topic>Survival</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Chen, Ming-Hui</creatorcontrib><creatorcontrib>Schifano, Elizabeth D.</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jing</au><au>Chen, Ming-Hui</au><au>Schifano, Elizabeth D.</au><au>Yan, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Updating of Survival Analysis</atitle><jtitle>Journal of computational and graphical statistics</jtitle><addtitle>J Comput Graph Stat</addtitle><date>2021</date><risdate>2021</risdate><volume>30</volume><issue>4</issue><spage>1209</spage><epage>1223</epage><pages>1209-1223</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>When large amounts of survival data arrive in streams, conventional estimation methods become computationally infeasible since they require access to all observations at each accumulation point. We develop online updating methods for carrying out survival analysis under the Cox proportional hazards model in an online-update framework. Our methods are also applicable with time-dependent covariates. Specifically, we propose online-updating estimators as well as their standard errors for both the regression coefficients and the baseline hazard function. Extensive simulation studies are conducted to investigate the empirical performance of the proposed estimators. A large colon cancer dataset from the Surveillance, Epidemiology, and End Results program and a large venture capital dataset with time-dependent covariates are analyzed to demonstrate the utility of the proposed methodologies. Supplemental files for this article are available online.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>35280977</pmid><doi>10.1080/10618600.2020.1870481</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-8600 |
ispartof | Journal of computational and graphical statistics, 2021, Vol.30 (4), p.1209-1223 |
issn | 1061-8600 1537-2715 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10618600_2020_1870481 |
source | Taylor and Francis Science and Technology Collection |
subjects | and end results (SEER) Cox model Data compression Datasets epidemiology Estimators Piecewise constant baseline hazard Regression coefficients Statistical models Streaming survival data Surveillance Survival Time dependence |
title | Online Updating of Survival Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Updating%20of%20Survival%20Analysis&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Wu,%20Jing&rft.date=2021&rft.volume=30&rft.issue=4&rft.spage=1209&rft.epage=1223&rft.pages=1209-1223&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.2020.1870481&rft_dat=%3Cproquest_cross%3E2638944458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078865412&rft_id=info:pmid/35280977&rfr_iscdi=true |