Loading…

Online Updating of Survival Analysis

When large amounts of survival data arrive in streams, conventional estimation methods become computationally infeasible since they require access to all observations at each accumulation point. We develop online updating methods for carrying out survival analysis under the Cox proportional hazards...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and graphical statistics 2021, Vol.30 (4), p.1209-1223
Main Authors: Wu, Jing, Chen, Ming-Hui, Schifano, Elizabeth D., Yan, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73
cites cdi_FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73
container_end_page 1223
container_issue 4
container_start_page 1209
container_title Journal of computational and graphical statistics
container_volume 30
creator Wu, Jing
Chen, Ming-Hui
Schifano, Elizabeth D.
Yan, Jun
description When large amounts of survival data arrive in streams, conventional estimation methods become computationally infeasible since they require access to all observations at each accumulation point. We develop online updating methods for carrying out survival analysis under the Cox proportional hazards model in an online-update framework. Our methods are also applicable with time-dependent covariates. Specifically, we propose online-updating estimators as well as their standard errors for both the regression coefficients and the baseline hazard function. Extensive simulation studies are conducted to investigate the empirical performance of the proposed estimators. A large colon cancer dataset from the Surveillance, Epidemiology, and End Results program and a large venture capital dataset with time-dependent covariates are analyzed to demonstrate the utility of the proposed methodologies. Supplemental files for this article are available online.
doi_str_mv 10.1080/10618600.2020.1870481
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10618600_2020_1870481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638944458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1E1ZbSjwBaiR64pIwd_8sFUVXQVqrUA_RsTRynuPLai50s2m9fr3ZbAQdOHtm_eX4zj5B3FM4paPhEQVItAc4ZsHqlFXBNX5FjKlrVMEXF61pXptlCR-RNKY8AQGWnDslRK5iGTqljcnYXg49ucb8acPLxYZHGxfc5r_0aw-IiYtgUX96SgxFDcaf784Tcf_v64_K6ub27urm8uG0s7-TUCEp7bcd-GASzHSAXoHpgQ3WDDDtLlYTegkY52o5jjwqYba2CatOxUbUn5PNOdzX3SzdYF6eMwayyX2LemITe_P0S_U_zkNZGd1QqLqvAx71ATr9mVyaz9MW6EDC6NBfDZKs7zrnQFf3wD_qY5lwHLqYFpbUUnLJKiR1lcyolu_HFDAWzzcE852C2OZh9DrXv_Z-TvHQ9L74CX3aAj2PKS_ydchjMhJuQ8pgxWl99_P-PJ-YklcY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078865412</pqid></control><display><type>article</type><title>Online Updating of Survival Analysis</title><source>Taylor and Francis Science and Technology Collection</source><creator>Wu, Jing ; Chen, Ming-Hui ; Schifano, Elizabeth D. ; Yan, Jun</creator><creatorcontrib>Wu, Jing ; Chen, Ming-Hui ; Schifano, Elizabeth D. ; Yan, Jun</creatorcontrib><description>When large amounts of survival data arrive in streams, conventional estimation methods become computationally infeasible since they require access to all observations at each accumulation point. We develop online updating methods for carrying out survival analysis under the Cox proportional hazards model in an online-update framework. Our methods are also applicable with time-dependent covariates. Specifically, we propose online-updating estimators as well as their standard errors for both the regression coefficients and the baseline hazard function. Extensive simulation studies are conducted to investigate the empirical performance of the proposed estimators. A large colon cancer dataset from the Surveillance, Epidemiology, and End Results program and a large venture capital dataset with time-dependent covariates are analyzed to demonstrate the utility of the proposed methodologies. Supplemental files for this article are available online.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.2020.1870481</identifier><identifier>PMID: 35280977</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>and end results (SEER) ; Cox model ; Data compression ; Datasets ; epidemiology ; Estimators ; Piecewise constant baseline hazard ; Regression coefficients ; Statistical models ; Streaming survival data ; Surveillance ; Survival ; Time dependence</subject><ispartof>Journal of computational and graphical statistics, 2021, Vol.30 (4), p.1209-1223</ispartof><rights>2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021</rights><rights>2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73</citedby><cites>FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35280977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Chen, Ming-Hui</creatorcontrib><creatorcontrib>Schifano, Elizabeth D.</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><title>Online Updating of Survival Analysis</title><title>Journal of computational and graphical statistics</title><addtitle>J Comput Graph Stat</addtitle><description>When large amounts of survival data arrive in streams, conventional estimation methods become computationally infeasible since they require access to all observations at each accumulation point. We develop online updating methods for carrying out survival analysis under the Cox proportional hazards model in an online-update framework. Our methods are also applicable with time-dependent covariates. Specifically, we propose online-updating estimators as well as their standard errors for both the regression coefficients and the baseline hazard function. Extensive simulation studies are conducted to investigate the empirical performance of the proposed estimators. A large colon cancer dataset from the Surveillance, Epidemiology, and End Results program and a large venture capital dataset with time-dependent covariates are analyzed to demonstrate the utility of the proposed methodologies. Supplemental files for this article are available online.</description><subject>and end results (SEER)</subject><subject>Cox model</subject><subject>Data compression</subject><subject>Datasets</subject><subject>epidemiology</subject><subject>Estimators</subject><subject>Piecewise constant baseline hazard</subject><subject>Regression coefficients</subject><subject>Statistical models</subject><subject>Streaming survival data</subject><subject>Surveillance</subject><subject>Survival</subject><subject>Time dependence</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS1E1ZbSjwBaiR64pIwd_8sFUVXQVqrUA_RsTRynuPLai50s2m9fr3ZbAQdOHtm_eX4zj5B3FM4paPhEQVItAc4ZsHqlFXBNX5FjKlrVMEXF61pXptlCR-RNKY8AQGWnDslRK5iGTqljcnYXg49ucb8acPLxYZHGxfc5r_0aw-IiYtgUX96SgxFDcaf784Tcf_v64_K6ub27urm8uG0s7-TUCEp7bcd-GASzHSAXoHpgQ3WDDDtLlYTegkY52o5jjwqYba2CatOxUbUn5PNOdzX3SzdYF6eMwayyX2LemITe_P0S_U_zkNZGd1QqLqvAx71ATr9mVyaz9MW6EDC6NBfDZKs7zrnQFf3wD_qY5lwHLqYFpbUUnLJKiR1lcyolu_HFDAWzzcE852C2OZh9DrXv_Z-TvHQ9L74CX3aAj2PKS_ydchjMhJuQ8pgxWl99_P-PJ-YklcY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wu, Jing</creator><creator>Chen, Ming-Hui</creator><creator>Schifano, Elizabeth D.</creator><creator>Yan, Jun</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2021</creationdate><title>Online Updating of Survival Analysis</title><author>Wu, Jing ; Chen, Ming-Hui ; Schifano, Elizabeth D. ; Yan, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>and end results (SEER)</topic><topic>Cox model</topic><topic>Data compression</topic><topic>Datasets</topic><topic>epidemiology</topic><topic>Estimators</topic><topic>Piecewise constant baseline hazard</topic><topic>Regression coefficients</topic><topic>Statistical models</topic><topic>Streaming survival data</topic><topic>Surveillance</topic><topic>Survival</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Chen, Ming-Hui</creatorcontrib><creatorcontrib>Schifano, Elizabeth D.</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jing</au><au>Chen, Ming-Hui</au><au>Schifano, Elizabeth D.</au><au>Yan, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Updating of Survival Analysis</atitle><jtitle>Journal of computational and graphical statistics</jtitle><addtitle>J Comput Graph Stat</addtitle><date>2021</date><risdate>2021</risdate><volume>30</volume><issue>4</issue><spage>1209</spage><epage>1223</epage><pages>1209-1223</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>When large amounts of survival data arrive in streams, conventional estimation methods become computationally infeasible since they require access to all observations at each accumulation point. We develop online updating methods for carrying out survival analysis under the Cox proportional hazards model in an online-update framework. Our methods are also applicable with time-dependent covariates. Specifically, we propose online-updating estimators as well as their standard errors for both the regression coefficients and the baseline hazard function. Extensive simulation studies are conducted to investigate the empirical performance of the proposed estimators. A large colon cancer dataset from the Surveillance, Epidemiology, and End Results program and a large venture capital dataset with time-dependent covariates are analyzed to demonstrate the utility of the proposed methodologies. Supplemental files for this article are available online.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>35280977</pmid><doi>10.1080/10618600.2020.1870481</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-8600
ispartof Journal of computational and graphical statistics, 2021, Vol.30 (4), p.1209-1223
issn 1061-8600
1537-2715
language eng
recordid cdi_crossref_primary_10_1080_10618600_2020_1870481
source Taylor and Francis Science and Technology Collection
subjects and end results (SEER)
Cox model
Data compression
Datasets
epidemiology
Estimators
Piecewise constant baseline hazard
Regression coefficients
Statistical models
Streaming survival data
Surveillance
Survival
Time dependence
title Online Updating of Survival Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Updating%20of%20Survival%20Analysis&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Wu,%20Jing&rft.date=2021&rft.volume=30&rft.issue=4&rft.spage=1209&rft.epage=1223&rft.pages=1209-1223&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.2020.1870481&rft_dat=%3Cproquest_cross%3E2638944458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-511b8cfbdd52c90a4507b02d271a2a9c1760bc08a6fc94aba702c3c70061e2f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078865412&rft_id=info:pmid/35280977&rfr_iscdi=true