Loading…
The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC
Speeding up Markov chain Monte Carlo (MCMC) for datasets with many observations by data subsampling has recently received considerable attention. A pseudo-marginal MCMC method is proposed that estimates the likelihood by data subsampling using a block-Poisson estimator. The estimator is a product of...
Saved in:
Published in: | Journal of computational and graphical statistics 2021-10, Vol.30 (4), p.877-888 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013 |
---|---|
cites | cdi_FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013 |
container_end_page | 888 |
container_issue | 4 |
container_start_page | 877 |
container_title | Journal of computational and graphical statistics |
container_volume | 30 |
creator | Quiroz, Matias Tran, Minh-Ngoc Villani, Mattias Kohn, Robert Dang, Khue-Dung |
description | Speeding up Markov chain Monte Carlo (MCMC) for datasets with many observations by data subsampling has recently received considerable attention. A pseudo-marginal MCMC method is proposed that estimates the likelihood by data subsampling using a block-Poisson estimator. The estimator is a product of Poisson estimators, allowing us to update a single block of subsample indicators in each MCMC iteration so that a desired correlation is achieved between the logs of successive likelihood estimates. This is important since pseudo-marginal MCMC with positively correlated likelihood estimates can use substantially smaller subsamples without adversely affecting the sampling efficiency. The block-Poisson estimator is unbiased but not necessarily positive, so the algorithm runs the MCMC on the absolute value of the likelihood estimator and uses an importance sampling correction to obtain consistent estimates of the posterior mean of any function of the parameters. Our article derives guidelines to select the optimal tuning parameters for our method and shows that it compares very favorably to regular MCMC without subsampling, and to two other recently proposed exact subsampling approaches in the literature.
Supplementary materials
for this article are available online. |
doi_str_mv | 10.1080/10618600.2021.1917420 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10618600_2021_1917420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078864078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013</originalsourceid><addsrcrecordid>eNqFkV1LwzAUhosoOKc_QSh4a-c5_Up755ybChsTnN6GNE1nZtfUpGXu35vS6aVeJDmB57zn43WcS4QRQgI3CDEmMcDIBx9HmCIJfThyBhgFxPMJRsc2tozXQafOmTEbAMA4JQNntnoX7l2p-If3rKQxqnKnppFb1ijtFvYs6-5Xlnt31VYid6dfjDfuS5sZtq1LWa3dxWQxOXdOClYacXF4h87rbLqaPHrz5cPTZDz3eIhB47EEbAthnrOIcIyDkNigyETOGUToJ2ERARd5JEiYchJjYYdhSHKSQ0ZiwGDoXPe6ZifqNqO1ts3pPVVM0nv5NqZKr6lpKaYRSTrc-x8vpeVJbJdj-auer7X6bIVp6Ea1urIT0QBIksShvS0V9RTXyhgtil9dBNo5Qn8coZ0j9OCIzbvt82RlN7tlO6XLnDZsXypdaFZxacv8LfENftmQow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078864078</pqid></control><display><type>article</type><title>The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC</title><source>Taylor and Francis Science and Technology Collection</source><creator>Quiroz, Matias ; Tran, Minh-Ngoc ; Villani, Mattias ; Kohn, Robert ; Dang, Khue-Dung</creator><creatorcontrib>Quiroz, Matias ; Tran, Minh-Ngoc ; Villani, Mattias ; Kohn, Robert ; Dang, Khue-Dung</creatorcontrib><description>Speeding up Markov chain Monte Carlo (MCMC) for datasets with many observations by data subsampling has recently received considerable attention. A pseudo-marginal MCMC method is proposed that estimates the likelihood by data subsampling using a block-Poisson estimator. The estimator is a product of Poisson estimators, allowing us to update a single block of subsample indicators in each MCMC iteration so that a desired correlation is achieved between the logs of successive likelihood estimates. This is important since pseudo-marginal MCMC with positively correlated likelihood estimates can use substantially smaller subsamples without adversely affecting the sampling efficiency. The block-Poisson estimator is unbiased but not necessarily positive, so the algorithm runs the MCMC on the absolute value of the likelihood estimator and uses an importance sampling correction to obtain consistent estimates of the posterior mean of any function of the parameters. Our article derives guidelines to select the optimal tuning parameters for our method and shows that it compares very favorably to regular MCMC without subsampling, and to two other recently proposed exact subsampling approaches in the literature.
Supplementary materials
for this article are available online.</description><identifier>ISSN: 1061-8600</identifier><identifier>ISSN: 1537-2715</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.2021.1917420</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Algorithms ; Bayesian inference ; Control variates ; Data subsampling ; Estimates ; Exact inference ; Importance sampling ; Markov chains ; Optimization ; Parameter estimation ; Poisson estimator ; Pseudo-marginal MCMC</subject><ispartof>Journal of computational and graphical statistics, 2021-10, Vol.30 (4), p.877-888</ispartof><rights>2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021</rights><rights>2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013</citedby><cites>FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013</cites><orcidid>0000-0003-2786-2519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176860$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-195781$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Quiroz, Matias</creatorcontrib><creatorcontrib>Tran, Minh-Ngoc</creatorcontrib><creatorcontrib>Villani, Mattias</creatorcontrib><creatorcontrib>Kohn, Robert</creatorcontrib><creatorcontrib>Dang, Khue-Dung</creatorcontrib><title>The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC</title><title>Journal of computational and graphical statistics</title><description>Speeding up Markov chain Monte Carlo (MCMC) for datasets with many observations by data subsampling has recently received considerable attention. A pseudo-marginal MCMC method is proposed that estimates the likelihood by data subsampling using a block-Poisson estimator. The estimator is a product of Poisson estimators, allowing us to update a single block of subsample indicators in each MCMC iteration so that a desired correlation is achieved between the logs of successive likelihood estimates. This is important since pseudo-marginal MCMC with positively correlated likelihood estimates can use substantially smaller subsamples without adversely affecting the sampling efficiency. The block-Poisson estimator is unbiased but not necessarily positive, so the algorithm runs the MCMC on the absolute value of the likelihood estimator and uses an importance sampling correction to obtain consistent estimates of the posterior mean of any function of the parameters. Our article derives guidelines to select the optimal tuning parameters for our method and shows that it compares very favorably to regular MCMC without subsampling, and to two other recently proposed exact subsampling approaches in the literature.
Supplementary materials
for this article are available online.</description><subject>Algorithms</subject><subject>Bayesian inference</subject><subject>Control variates</subject><subject>Data subsampling</subject><subject>Estimates</subject><subject>Exact inference</subject><subject>Importance sampling</subject><subject>Markov chains</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Poisson estimator</subject><subject>Pseudo-marginal MCMC</subject><issn>1061-8600</issn><issn>1537-2715</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkV1LwzAUhosoOKc_QSh4a-c5_Up755ybChsTnN6GNE1nZtfUpGXu35vS6aVeJDmB57zn43WcS4QRQgI3CDEmMcDIBx9HmCIJfThyBhgFxPMJRsc2tozXQafOmTEbAMA4JQNntnoX7l2p-If3rKQxqnKnppFb1ijtFvYs6-5Xlnt31VYid6dfjDfuS5sZtq1LWa3dxWQxOXdOClYacXF4h87rbLqaPHrz5cPTZDz3eIhB47EEbAthnrOIcIyDkNigyETOGUToJ2ERARd5JEiYchJjYYdhSHKSQ0ZiwGDoXPe6ZifqNqO1ts3pPVVM0nv5NqZKr6lpKaYRSTrc-x8vpeVJbJdj-auer7X6bIVp6Ea1urIT0QBIksShvS0V9RTXyhgtil9dBNo5Qn8coZ0j9OCIzbvt82RlN7tlO6XLnDZsXypdaFZxacv8LfENftmQow</recordid><startdate>20211002</startdate><enddate>20211002</enddate><creator>Quiroz, Matias</creator><creator>Tran, Minh-Ngoc</creator><creator>Villani, Mattias</creator><creator>Kohn, Robert</creator><creator>Dang, Khue-Dung</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0003-2786-2519</orcidid></search><sort><creationdate>20211002</creationdate><title>The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC</title><author>Quiroz, Matias ; Tran, Minh-Ngoc ; Villani, Mattias ; Kohn, Robert ; Dang, Khue-Dung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bayesian inference</topic><topic>Control variates</topic><topic>Data subsampling</topic><topic>Estimates</topic><topic>Exact inference</topic><topic>Importance sampling</topic><topic>Markov chains</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Poisson estimator</topic><topic>Pseudo-marginal MCMC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quiroz, Matias</creatorcontrib><creatorcontrib>Tran, Minh-Ngoc</creatorcontrib><creatorcontrib>Villani, Mattias</creatorcontrib><creatorcontrib>Kohn, Robert</creatorcontrib><creatorcontrib>Dang, Khue-Dung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quiroz, Matias</au><au>Tran, Minh-Ngoc</au><au>Villani, Mattias</au><au>Kohn, Robert</au><au>Dang, Khue-Dung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2021-10-02</date><risdate>2021</risdate><volume>30</volume><issue>4</issue><spage>877</spage><epage>888</epage><pages>877-888</pages><issn>1061-8600</issn><issn>1537-2715</issn><eissn>1537-2715</eissn><abstract>Speeding up Markov chain Monte Carlo (MCMC) for datasets with many observations by data subsampling has recently received considerable attention. A pseudo-marginal MCMC method is proposed that estimates the likelihood by data subsampling using a block-Poisson estimator. The estimator is a product of Poisson estimators, allowing us to update a single block of subsample indicators in each MCMC iteration so that a desired correlation is achieved between the logs of successive likelihood estimates. This is important since pseudo-marginal MCMC with positively correlated likelihood estimates can use substantially smaller subsamples without adversely affecting the sampling efficiency. The block-Poisson estimator is unbiased but not necessarily positive, so the algorithm runs the MCMC on the absolute value of the likelihood estimator and uses an importance sampling correction to obtain consistent estimates of the posterior mean of any function of the parameters. Our article derives guidelines to select the optimal tuning parameters for our method and shows that it compares very favorably to regular MCMC without subsampling, and to two other recently proposed exact subsampling approaches in the literature.
Supplementary materials
for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/10618600.2021.1917420</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2786-2519</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-8600 |
ispartof | Journal of computational and graphical statistics, 2021-10, Vol.30 (4), p.877-888 |
issn | 1061-8600 1537-2715 1537-2715 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10618600_2021_1917420 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algorithms Bayesian inference Control variates Data subsampling Estimates Exact inference Importance sampling Markov chains Optimization Parameter estimation Poisson estimator Pseudo-marginal MCMC |
title | The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Block-Poisson%20Estimator%20for%20Optimally%20Tuned%20Exact%20Subsampling%20MCMC&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Quiroz,%20Matias&rft.date=2021-10-02&rft.volume=30&rft.issue=4&rft.spage=877&rft.epage=888&rft.pages=877-888&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.2021.1917420&rft_dat=%3Cproquest_cross%3E3078864078%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078864078&rft_id=info:pmid/&rfr_iscdi=true |