Loading…

The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC

Speeding up Markov chain Monte Carlo (MCMC) for datasets with many observations by data subsampling has recently received considerable attention. A pseudo-marginal MCMC method is proposed that estimates the likelihood by data subsampling using a block-Poisson estimator. The estimator is a product of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and graphical statistics 2021-10, Vol.30 (4), p.877-888
Main Authors: Quiroz, Matias, Tran, Minh-Ngoc, Villani, Mattias, Kohn, Robert, Dang, Khue-Dung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013
cites cdi_FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013
container_end_page 888
container_issue 4
container_start_page 877
container_title Journal of computational and graphical statistics
container_volume 30
creator Quiroz, Matias
Tran, Minh-Ngoc
Villani, Mattias
Kohn, Robert
Dang, Khue-Dung
description Speeding up Markov chain Monte Carlo (MCMC) for datasets with many observations by data subsampling has recently received considerable attention. A pseudo-marginal MCMC method is proposed that estimates the likelihood by data subsampling using a block-Poisson estimator. The estimator is a product of Poisson estimators, allowing us to update a single block of subsample indicators in each MCMC iteration so that a desired correlation is achieved between the logs of successive likelihood estimates. This is important since pseudo-marginal MCMC with positively correlated likelihood estimates can use substantially smaller subsamples without adversely affecting the sampling efficiency. The block-Poisson estimator is unbiased but not necessarily positive, so the algorithm runs the MCMC on the absolute value of the likelihood estimator and uses an importance sampling correction to obtain consistent estimates of the posterior mean of any function of the parameters. Our article derives guidelines to select the optimal tuning parameters for our method and shows that it compares very favorably to regular MCMC without subsampling, and to two other recently proposed exact subsampling approaches in the literature. Supplementary materials for this article are available online.
doi_str_mv 10.1080/10618600.2021.1917420
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10618600_2021_1917420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078864078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013</originalsourceid><addsrcrecordid>eNqFkV1LwzAUhosoOKc_QSh4a-c5_Up755ybChsTnN6GNE1nZtfUpGXu35vS6aVeJDmB57zn43WcS4QRQgI3CDEmMcDIBx9HmCIJfThyBhgFxPMJRsc2tozXQafOmTEbAMA4JQNntnoX7l2p-If3rKQxqnKnppFb1ijtFvYs6-5Xlnt31VYid6dfjDfuS5sZtq1LWa3dxWQxOXdOClYacXF4h87rbLqaPHrz5cPTZDz3eIhB47EEbAthnrOIcIyDkNigyETOGUToJ2ERARd5JEiYchJjYYdhSHKSQ0ZiwGDoXPe6ZifqNqO1ts3pPVVM0nv5NqZKr6lpKaYRSTrc-x8vpeVJbJdj-auer7X6bIVp6Ea1urIT0QBIksShvS0V9RTXyhgtil9dBNo5Qn8coZ0j9OCIzbvt82RlN7tlO6XLnDZsXypdaFZxacv8LfENftmQow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078864078</pqid></control><display><type>article</type><title>The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC</title><source>Taylor and Francis Science and Technology Collection</source><creator>Quiroz, Matias ; Tran, Minh-Ngoc ; Villani, Mattias ; Kohn, Robert ; Dang, Khue-Dung</creator><creatorcontrib>Quiroz, Matias ; Tran, Minh-Ngoc ; Villani, Mattias ; Kohn, Robert ; Dang, Khue-Dung</creatorcontrib><description>Speeding up Markov chain Monte Carlo (MCMC) for datasets with many observations by data subsampling has recently received considerable attention. A pseudo-marginal MCMC method is proposed that estimates the likelihood by data subsampling using a block-Poisson estimator. The estimator is a product of Poisson estimators, allowing us to update a single block of subsample indicators in each MCMC iteration so that a desired correlation is achieved between the logs of successive likelihood estimates. This is important since pseudo-marginal MCMC with positively correlated likelihood estimates can use substantially smaller subsamples without adversely affecting the sampling efficiency. The block-Poisson estimator is unbiased but not necessarily positive, so the algorithm runs the MCMC on the absolute value of the likelihood estimator and uses an importance sampling correction to obtain consistent estimates of the posterior mean of any function of the parameters. Our article derives guidelines to select the optimal tuning parameters for our method and shows that it compares very favorably to regular MCMC without subsampling, and to two other recently proposed exact subsampling approaches in the literature. Supplementary materials for this article are available online.</description><identifier>ISSN: 1061-8600</identifier><identifier>ISSN: 1537-2715</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.2021.1917420</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Algorithms ; Bayesian inference ; Control variates ; Data subsampling ; Estimates ; Exact inference ; Importance sampling ; Markov chains ; Optimization ; Parameter estimation ; Poisson estimator ; Pseudo-marginal MCMC</subject><ispartof>Journal of computational and graphical statistics, 2021-10, Vol.30 (4), p.877-888</ispartof><rights>2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021</rights><rights>2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013</citedby><cites>FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013</cites><orcidid>0000-0003-2786-2519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176860$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-195781$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Quiroz, Matias</creatorcontrib><creatorcontrib>Tran, Minh-Ngoc</creatorcontrib><creatorcontrib>Villani, Mattias</creatorcontrib><creatorcontrib>Kohn, Robert</creatorcontrib><creatorcontrib>Dang, Khue-Dung</creatorcontrib><title>The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC</title><title>Journal of computational and graphical statistics</title><description>Speeding up Markov chain Monte Carlo (MCMC) for datasets with many observations by data subsampling has recently received considerable attention. A pseudo-marginal MCMC method is proposed that estimates the likelihood by data subsampling using a block-Poisson estimator. The estimator is a product of Poisson estimators, allowing us to update a single block of subsample indicators in each MCMC iteration so that a desired correlation is achieved between the logs of successive likelihood estimates. This is important since pseudo-marginal MCMC with positively correlated likelihood estimates can use substantially smaller subsamples without adversely affecting the sampling efficiency. The block-Poisson estimator is unbiased but not necessarily positive, so the algorithm runs the MCMC on the absolute value of the likelihood estimator and uses an importance sampling correction to obtain consistent estimates of the posterior mean of any function of the parameters. Our article derives guidelines to select the optimal tuning parameters for our method and shows that it compares very favorably to regular MCMC without subsampling, and to two other recently proposed exact subsampling approaches in the literature. Supplementary materials for this article are available online.</description><subject>Algorithms</subject><subject>Bayesian inference</subject><subject>Control variates</subject><subject>Data subsampling</subject><subject>Estimates</subject><subject>Exact inference</subject><subject>Importance sampling</subject><subject>Markov chains</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Poisson estimator</subject><subject>Pseudo-marginal MCMC</subject><issn>1061-8600</issn><issn>1537-2715</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkV1LwzAUhosoOKc_QSh4a-c5_Up755ybChsTnN6GNE1nZtfUpGXu35vS6aVeJDmB57zn43WcS4QRQgI3CDEmMcDIBx9HmCIJfThyBhgFxPMJRsc2tozXQafOmTEbAMA4JQNntnoX7l2p-If3rKQxqnKnppFb1ijtFvYs6-5Xlnt31VYid6dfjDfuS5sZtq1LWa3dxWQxOXdOClYacXF4h87rbLqaPHrz5cPTZDz3eIhB47EEbAthnrOIcIyDkNigyETOGUToJ2ERARd5JEiYchJjYYdhSHKSQ0ZiwGDoXPe6ZifqNqO1ts3pPVVM0nv5NqZKr6lpKaYRSTrc-x8vpeVJbJdj-auer7X6bIVp6Ea1urIT0QBIksShvS0V9RTXyhgtil9dBNo5Qn8coZ0j9OCIzbvt82RlN7tlO6XLnDZsXypdaFZxacv8LfENftmQow</recordid><startdate>20211002</startdate><enddate>20211002</enddate><creator>Quiroz, Matias</creator><creator>Tran, Minh-Ngoc</creator><creator>Villani, Mattias</creator><creator>Kohn, Robert</creator><creator>Dang, Khue-Dung</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0003-2786-2519</orcidid></search><sort><creationdate>20211002</creationdate><title>The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC</title><author>Quiroz, Matias ; Tran, Minh-Ngoc ; Villani, Mattias ; Kohn, Robert ; Dang, Khue-Dung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bayesian inference</topic><topic>Control variates</topic><topic>Data subsampling</topic><topic>Estimates</topic><topic>Exact inference</topic><topic>Importance sampling</topic><topic>Markov chains</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Poisson estimator</topic><topic>Pseudo-marginal MCMC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quiroz, Matias</creatorcontrib><creatorcontrib>Tran, Minh-Ngoc</creatorcontrib><creatorcontrib>Villani, Mattias</creatorcontrib><creatorcontrib>Kohn, Robert</creatorcontrib><creatorcontrib>Dang, Khue-Dung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quiroz, Matias</au><au>Tran, Minh-Ngoc</au><au>Villani, Mattias</au><au>Kohn, Robert</au><au>Dang, Khue-Dung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2021-10-02</date><risdate>2021</risdate><volume>30</volume><issue>4</issue><spage>877</spage><epage>888</epage><pages>877-888</pages><issn>1061-8600</issn><issn>1537-2715</issn><eissn>1537-2715</eissn><abstract>Speeding up Markov chain Monte Carlo (MCMC) for datasets with many observations by data subsampling has recently received considerable attention. A pseudo-marginal MCMC method is proposed that estimates the likelihood by data subsampling using a block-Poisson estimator. The estimator is a product of Poisson estimators, allowing us to update a single block of subsample indicators in each MCMC iteration so that a desired correlation is achieved between the logs of successive likelihood estimates. This is important since pseudo-marginal MCMC with positively correlated likelihood estimates can use substantially smaller subsamples without adversely affecting the sampling efficiency. The block-Poisson estimator is unbiased but not necessarily positive, so the algorithm runs the MCMC on the absolute value of the likelihood estimator and uses an importance sampling correction to obtain consistent estimates of the posterior mean of any function of the parameters. Our article derives guidelines to select the optimal tuning parameters for our method and shows that it compares very favorably to regular MCMC without subsampling, and to two other recently proposed exact subsampling approaches in the literature. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10618600.2021.1917420</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2786-2519</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1061-8600
ispartof Journal of computational and graphical statistics, 2021-10, Vol.30 (4), p.877-888
issn 1061-8600
1537-2715
1537-2715
language eng
recordid cdi_crossref_primary_10_1080_10618600_2021_1917420
source Taylor and Francis Science and Technology Collection
subjects Algorithms
Bayesian inference
Control variates
Data subsampling
Estimates
Exact inference
Importance sampling
Markov chains
Optimization
Parameter estimation
Poisson estimator
Pseudo-marginal MCMC
title The Block-Poisson Estimator for Optimally Tuned Exact Subsampling MCMC
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Block-Poisson%20Estimator%20for%20Optimally%20Tuned%20Exact%20Subsampling%20MCMC&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Quiroz,%20Matias&rft.date=2021-10-02&rft.volume=30&rft.issue=4&rft.spage=877&rft.epage=888&rft.pages=877-888&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.2021.1917420&rft_dat=%3Cproquest_cross%3E3078864078%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-a806004dda57c16347a57fbedca051284f50ced5e749c761f191a17d7d0b76013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078864078&rft_id=info:pmid/&rfr_iscdi=true