Loading…
Joint Modeling of Longitudinal Imaging and Survival Data
This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then,...
Saved in:
Published in: | Journal of computational and graphical statistics 2023-04, Vol.32 (2), p.402-412 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3 |
container_end_page | 412 |
container_issue | 2 |
container_start_page | 402 |
container_title | Journal of computational and graphical statistics |
container_volume | 32 |
creator | Kang, Kai Song, Xin Yuan |
description | This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods.
Supplementary materials
for this article are available online. |
doi_str_mv | 10.1080/10618600.2022.2102027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10618600_2022_2102027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818539534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKsfQSj43HmTNE3ypsx_k4kP6nPImmZkdM1M2sm-vSmbrz6dy-Gcw-WH0DWGKQYBtxgqLCqAKQFCpgRDUn6CJphRXhCO2Wm6U6YYQ-foIsY1AOBK8gkSr951ff7mTdO6bpV7my98t3L9YFyn23y-0avR153JP4awc7tkPuheX6Izq9vYXB01Q19Pj5-zl2Lx_jyf3S-KmlLRF_WSLFlTcwK0orSkzEgOnFkBGDNbGlJiaTg3eiklFVw0kjIoNTG6KUEQSzN0c9jdBv89NLFXaz-E9FpURGDBqGRpNkPskKqDjzE0Vm2D2-iwVxjUCEn9QVIjJHWElHp3h57rrA8b_eNDa1Sv960PNuiudlHR_yd-AZSQaxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818539534</pqid></control><display><type>article</type><title>Joint Modeling of Longitudinal Imaging and Survival Data</title><source>Taylor and Francis Science and Technology Collection</source><creator>Kang, Kai ; Song, Xin Yuan</creator><creatorcontrib>Kang, Kai ; Song, Xin Yuan</creatorcontrib><description>This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods.
Supplementary materials
for this article are available online.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.2022.2102027</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Alzheimer's disease ; Dimensional analysis ; Error analysis ; HD-FPCA ; Imaging data ; Longitudinal response ; Markov chains ; MCMC methods ; Medical imaging ; Modelling ; Principal components analysis ; Regression models ; Statistical analysis ; Statistical inference ; Survival ; Time-to-event outcome</subject><ispartof>Journal of computational and graphical statistics, 2023-04, Vol.32 (2), p.402-412</ispartof><rights>2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022</rights><rights>2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3</citedby><cites>FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kang, Kai</creatorcontrib><creatorcontrib>Song, Xin Yuan</creatorcontrib><title>Joint Modeling of Longitudinal Imaging and Survival Data</title><title>Journal of computational and graphical statistics</title><description>This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods.
Supplementary materials
for this article are available online.</description><subject>Alzheimer's disease</subject><subject>Dimensional analysis</subject><subject>Error analysis</subject><subject>HD-FPCA</subject><subject>Imaging data</subject><subject>Longitudinal response</subject><subject>Markov chains</subject><subject>MCMC methods</subject><subject>Medical imaging</subject><subject>Modelling</subject><subject>Principal components analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Survival</subject><subject>Time-to-event outcome</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKsfQSj43HmTNE3ypsx_k4kP6nPImmZkdM1M2sm-vSmbrz6dy-Gcw-WH0DWGKQYBtxgqLCqAKQFCpgRDUn6CJphRXhCO2Wm6U6YYQ-foIsY1AOBK8gkSr951ff7mTdO6bpV7my98t3L9YFyn23y-0avR153JP4awc7tkPuheX6Izq9vYXB01Q19Pj5-zl2Lx_jyf3S-KmlLRF_WSLFlTcwK0orSkzEgOnFkBGDNbGlJiaTg3eiklFVw0kjIoNTG6KUEQSzN0c9jdBv89NLFXaz-E9FpURGDBqGRpNkPskKqDjzE0Vm2D2-iwVxjUCEn9QVIjJHWElHp3h57rrA8b_eNDa1Sv960PNuiudlHR_yd-AZSQaxI</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Kang, Kai</creator><creator>Song, Xin Yuan</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20230403</creationdate><title>Joint Modeling of Longitudinal Imaging and Survival Data</title><author>Kang, Kai ; Song, Xin Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Dimensional analysis</topic><topic>Error analysis</topic><topic>HD-FPCA</topic><topic>Imaging data</topic><topic>Longitudinal response</topic><topic>Markov chains</topic><topic>MCMC methods</topic><topic>Medical imaging</topic><topic>Modelling</topic><topic>Principal components analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Survival</topic><topic>Time-to-event outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Kai</creatorcontrib><creatorcontrib>Song, Xin Yuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Kai</au><au>Song, Xin Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Modeling of Longitudinal Imaging and Survival Data</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2023-04-03</date><risdate>2023</risdate><volume>32</volume><issue>2</issue><spage>402</spage><epage>412</epage><pages>402-412</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods.
Supplementary materials
for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/10618600.2022.2102027</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-8600 |
ispartof | Journal of computational and graphical statistics, 2023-04, Vol.32 (2), p.402-412 |
issn | 1061-8600 1537-2715 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10618600_2022_2102027 |
source | Taylor and Francis Science and Technology Collection |
subjects | Alzheimer's disease Dimensional analysis Error analysis HD-FPCA Imaging data Longitudinal response Markov chains MCMC methods Medical imaging Modelling Principal components analysis Regression models Statistical analysis Statistical inference Survival Time-to-event outcome |
title | Joint Modeling of Longitudinal Imaging and Survival Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Modeling%20of%20Longitudinal%20Imaging%20and%20Survival%20Data&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Kang,%20Kai&rft.date=2023-04-03&rft.volume=32&rft.issue=2&rft.spage=402&rft.epage=412&rft.pages=402-412&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.2022.2102027&rft_dat=%3Cproquest_cross%3E2818539534%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818539534&rft_id=info:pmid/&rfr_iscdi=true |