Loading…

Joint Modeling of Longitudinal Imaging and Survival Data

This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and graphical statistics 2023-04, Vol.32 (2), p.402-412
Main Authors: Kang, Kai, Song, Xin Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3
cites cdi_FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3
container_end_page 412
container_issue 2
container_start_page 402
container_title Journal of computational and graphical statistics
container_volume 32
creator Kang, Kai
Song, Xin Yuan
description This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods. Supplementary materials for this article are available online.
doi_str_mv 10.1080/10618600.2022.2102027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10618600_2022_2102027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818539534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKsfQSj43HmTNE3ypsx_k4kP6nPImmZkdM1M2sm-vSmbrz6dy-Gcw-WH0DWGKQYBtxgqLCqAKQFCpgRDUn6CJphRXhCO2Wm6U6YYQ-foIsY1AOBK8gkSr951ff7mTdO6bpV7my98t3L9YFyn23y-0avR153JP4awc7tkPuheX6Izq9vYXB01Q19Pj5-zl2Lx_jyf3S-KmlLRF_WSLFlTcwK0orSkzEgOnFkBGDNbGlJiaTg3eiklFVw0kjIoNTG6KUEQSzN0c9jdBv89NLFXaz-E9FpURGDBqGRpNkPskKqDjzE0Vm2D2-iwVxjUCEn9QVIjJHWElHp3h57rrA8b_eNDa1Sv960PNuiudlHR_yd-AZSQaxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818539534</pqid></control><display><type>article</type><title>Joint Modeling of Longitudinal Imaging and Survival Data</title><source>Taylor and Francis Science and Technology Collection</source><creator>Kang, Kai ; Song, Xin Yuan</creator><creatorcontrib>Kang, Kai ; Song, Xin Yuan</creatorcontrib><description>This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods. Supplementary materials for this article are available online.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.2022.2102027</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Alzheimer's disease ; Dimensional analysis ; Error analysis ; HD-FPCA ; Imaging data ; Longitudinal response ; Markov chains ; MCMC methods ; Medical imaging ; Modelling ; Principal components analysis ; Regression models ; Statistical analysis ; Statistical inference ; Survival ; Time-to-event outcome</subject><ispartof>Journal of computational and graphical statistics, 2023-04, Vol.32 (2), p.402-412</ispartof><rights>2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022</rights><rights>2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3</citedby><cites>FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kang, Kai</creatorcontrib><creatorcontrib>Song, Xin Yuan</creatorcontrib><title>Joint Modeling of Longitudinal Imaging and Survival Data</title><title>Journal of computational and graphical statistics</title><description>This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods. Supplementary materials for this article are available online.</description><subject>Alzheimer's disease</subject><subject>Dimensional analysis</subject><subject>Error analysis</subject><subject>HD-FPCA</subject><subject>Imaging data</subject><subject>Longitudinal response</subject><subject>Markov chains</subject><subject>MCMC methods</subject><subject>Medical imaging</subject><subject>Modelling</subject><subject>Principal components analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Survival</subject><subject>Time-to-event outcome</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKsfQSj43HmTNE3ypsx_k4kP6nPImmZkdM1M2sm-vSmbrz6dy-Gcw-WH0DWGKQYBtxgqLCqAKQFCpgRDUn6CJphRXhCO2Wm6U6YYQ-foIsY1AOBK8gkSr951ff7mTdO6bpV7my98t3L9YFyn23y-0avR153JP4awc7tkPuheX6Izq9vYXB01Q19Pj5-zl2Lx_jyf3S-KmlLRF_WSLFlTcwK0orSkzEgOnFkBGDNbGlJiaTg3eiklFVw0kjIoNTG6KUEQSzN0c9jdBv89NLFXaz-E9FpURGDBqGRpNkPskKqDjzE0Vm2D2-iwVxjUCEn9QVIjJHWElHp3h57rrA8b_eNDa1Sv960PNuiudlHR_yd-AZSQaxI</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Kang, Kai</creator><creator>Song, Xin Yuan</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20230403</creationdate><title>Joint Modeling of Longitudinal Imaging and Survival Data</title><author>Kang, Kai ; Song, Xin Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Dimensional analysis</topic><topic>Error analysis</topic><topic>HD-FPCA</topic><topic>Imaging data</topic><topic>Longitudinal response</topic><topic>Markov chains</topic><topic>MCMC methods</topic><topic>Medical imaging</topic><topic>Modelling</topic><topic>Principal components analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Survival</topic><topic>Time-to-event outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Kai</creatorcontrib><creatorcontrib>Song, Xin Yuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Kai</au><au>Song, Xin Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Modeling of Longitudinal Imaging and Survival Data</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2023-04-03</date><risdate>2023</risdate><volume>32</volume><issue>2</issue><spage>402</spage><epage>412</epage><pages>402-412</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10618600.2022.2102027</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-8600
ispartof Journal of computational and graphical statistics, 2023-04, Vol.32 (2), p.402-412
issn 1061-8600
1537-2715
language eng
recordid cdi_crossref_primary_10_1080_10618600_2022_2102027
source Taylor and Francis Science and Technology Collection
subjects Alzheimer's disease
Dimensional analysis
Error analysis
HD-FPCA
Imaging data
Longitudinal response
Markov chains
MCMC methods
Medical imaging
Modelling
Principal components analysis
Regression models
Statistical analysis
Statistical inference
Survival
Time-to-event outcome
title Joint Modeling of Longitudinal Imaging and Survival Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Modeling%20of%20Longitudinal%20Imaging%20and%20Survival%20Data&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Kang,%20Kai&rft.date=2023-04-03&rft.volume=32&rft.issue=2&rft.spage=402&rft.epage=412&rft.pages=402-412&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.2022.2102027&rft_dat=%3Cproquest_cross%3E2818539534%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818539534&rft_id=info:pmid/&rfr_iscdi=true