Loading…

Prediction of biological activity profiles of cyanobacterial secondary metabolites

Over the past decade cyanobacteria have become an interesting source of new classes of pharmacologically active natural products. Some cyanobacterial secondary metabolites (CSMs) are also well known for their toxic effects on living species. The PASS (Prediction of Activity Spectra for Substances) c...

Full description

Saved in:
Bibliographic Details
Published in:SAR and QSAR in environmental research 2007-10, Vol.18 (7-8), p.629-643
Main Authors: Devillers, J., Doré, J. C., Guyot, M., Poroikov, V., Gloriozova, T., Lagunin, A., Filimonov, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-6fab7473c63786b8573deb688b45a3db553fdc7d446c8d91e3e065a42575ab893
cites cdi_FETCH-LOGICAL-c466t-6fab7473c63786b8573deb688b45a3db553fdc7d446c8d91e3e065a42575ab893
container_end_page 643
container_issue 7-8
container_start_page 629
container_title SAR and QSAR in environmental research
container_volume 18
creator Devillers, J.
Doré, J. C.
Guyot, M.
Poroikov, V.
Gloriozova, T.
Lagunin, A.
Filimonov, D.
description Over the past decade cyanobacteria have become an interesting source of new classes of pharmacologically active natural products. Some cyanobacterial secondary metabolites (CSMs) are also well known for their toxic effects on living species. The PASS (Prediction of Activity Spectra for Substances) computer program, which is able to simultaneously predict more than one thousand biological and toxicological activities from only the structural formulas of the chemicals, was used to predict the biological activity profile of 681 CSMs. Multivariate methods were employed to structure and analyse this wealth of biological and chemical information. PASS predictions were successfully compared to the available information on the pharmacological and toxicological activity of these compounds.
doi_str_mv 10.1080/10629360701698704
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10629360701698704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18038364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-6fab7473c63786b8573deb688b45a3db553fdc7d446c8d91e3e065a42575ab893</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMotlZ_gC-yf2B1sskmWfBFijcoKKLQtyW3lch2U5J42X9vSgs-iPg0w5zzDYeD0CmGcwwCLjCwqiEMOGDWCA50D00xVE0JlC33NzurymxYTtBRjG8AIAjwQzTBAoggjE7R02Owxunk_FD4rlDO9_7VadkXMh8_XBqLdfCd623c6HqUg1dZssFlT7TaD0aGsVjZJJXvXbLxGB10so_2ZDdn6OXm-nl-Vy4ebu_nV4tSU8ZSyTqpOOVEM8IFU6LmxFjFhFC0lsSouiad0dxQyrQwDbbEAqslrWpeSyUaMkN4-1cHH2OwXbsObpXDtBjaTT_tr34yc7Zl1u9qZc0PsSskG_jW4IbOh5X89KE3bZJj70MX5KBd_P22TV8pk5f_kuTvZN-2wYck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of biological activity profiles of cyanobacterial secondary metabolites</title><source>Taylor and Francis Science and Technology Collection</source><creator>Devillers, J. ; Doré, J. C. ; Guyot, M. ; Poroikov, V. ; Gloriozova, T. ; Lagunin, A. ; Filimonov, D.</creator><creatorcontrib>Devillers, J. ; Doré, J. C. ; Guyot, M. ; Poroikov, V. ; Gloriozova, T. ; Lagunin, A. ; Filimonov, D.</creatorcontrib><description>Over the past decade cyanobacteria have become an interesting source of new classes of pharmacologically active natural products. Some cyanobacterial secondary metabolites (CSMs) are also well known for their toxic effects on living species. The PASS (Prediction of Activity Spectra for Substances) computer program, which is able to simultaneously predict more than one thousand biological and toxicological activities from only the structural formulas of the chemicals, was used to predict the biological activity profile of 681 CSMs. Multivariate methods were employed to structure and analyse this wealth of biological and chemical information. PASS predictions were successfully compared to the available information on the pharmacological and toxicological activity of these compounds.</description><identifier>ISSN: 1062-936X</identifier><identifier>EISSN: 1029-046X</identifier><identifier>DOI: 10.1080/10629360701698704</identifier><identifier>PMID: 18038364</identifier><language>eng</language><publisher>England: Taylor &amp; Francis Group</publisher><subject>Biological Products - chemistry ; Biological Products - isolation &amp; purification ; Biological Products - pharmacology ; Cyanobacteria ; Cyanobacteria - chemistry ; Cyanobacteria - metabolism ; Forecasting - methods ; Molecular Structure ; Multivariate analyses ; Noncongeneric SAR ; PASS program ; Secondary metabolites ; Software ; Structure-Activity Relationship</subject><ispartof>SAR and QSAR in environmental research, 2007-10, Vol.18 (7-8), p.629-643</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-6fab7473c63786b8573deb688b45a3db553fdc7d446c8d91e3e065a42575ab893</citedby><cites>FETCH-LOGICAL-c466t-6fab7473c63786b8573deb688b45a3db553fdc7d446c8d91e3e065a42575ab893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18038364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Devillers, J.</creatorcontrib><creatorcontrib>Doré, J. C.</creatorcontrib><creatorcontrib>Guyot, M.</creatorcontrib><creatorcontrib>Poroikov, V.</creatorcontrib><creatorcontrib>Gloriozova, T.</creatorcontrib><creatorcontrib>Lagunin, A.</creatorcontrib><creatorcontrib>Filimonov, D.</creatorcontrib><title>Prediction of biological activity profiles of cyanobacterial secondary metabolites</title><title>SAR and QSAR in environmental research</title><addtitle>SAR QSAR Environ Res</addtitle><description>Over the past decade cyanobacteria have become an interesting source of new classes of pharmacologically active natural products. Some cyanobacterial secondary metabolites (CSMs) are also well known for their toxic effects on living species. The PASS (Prediction of Activity Spectra for Substances) computer program, which is able to simultaneously predict more than one thousand biological and toxicological activities from only the structural formulas of the chemicals, was used to predict the biological activity profile of 681 CSMs. Multivariate methods were employed to structure and analyse this wealth of biological and chemical information. PASS predictions were successfully compared to the available information on the pharmacological and toxicological activity of these compounds.</description><subject>Biological Products - chemistry</subject><subject>Biological Products - isolation &amp; purification</subject><subject>Biological Products - pharmacology</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - chemistry</subject><subject>Cyanobacteria - metabolism</subject><subject>Forecasting - methods</subject><subject>Molecular Structure</subject><subject>Multivariate analyses</subject><subject>Noncongeneric SAR</subject><subject>PASS program</subject><subject>Secondary metabolites</subject><subject>Software</subject><subject>Structure-Activity Relationship</subject><issn>1062-936X</issn><issn>1029-046X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMotlZ_gC-yf2B1sskmWfBFijcoKKLQtyW3lch2U5J42X9vSgs-iPg0w5zzDYeD0CmGcwwCLjCwqiEMOGDWCA50D00xVE0JlC33NzurymxYTtBRjG8AIAjwQzTBAoggjE7R02Owxunk_FD4rlDO9_7VadkXMh8_XBqLdfCd623c6HqUg1dZssFlT7TaD0aGsVjZJJXvXbLxGB10so_2ZDdn6OXm-nl-Vy4ebu_nV4tSU8ZSyTqpOOVEM8IFU6LmxFjFhFC0lsSouiad0dxQyrQwDbbEAqslrWpeSyUaMkN4-1cHH2OwXbsObpXDtBjaTT_tr34yc7Zl1u9qZc0PsSskG_jW4IbOh5X89KE3bZJj70MX5KBd_P22TV8pk5f_kuTvZN-2wYck</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Devillers, J.</creator><creator>Doré, J. C.</creator><creator>Guyot, M.</creator><creator>Poroikov, V.</creator><creator>Gloriozova, T.</creator><creator>Lagunin, A.</creator><creator>Filimonov, D.</creator><general>Taylor &amp; Francis Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20071001</creationdate><title>Prediction of biological activity profiles of cyanobacterial secondary metabolites</title><author>Devillers, J. ; Doré, J. C. ; Guyot, M. ; Poroikov, V. ; Gloriozova, T. ; Lagunin, A. ; Filimonov, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-6fab7473c63786b8573deb688b45a3db553fdc7d446c8d91e3e065a42575ab893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological Products - chemistry</topic><topic>Biological Products - isolation &amp; purification</topic><topic>Biological Products - pharmacology</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - chemistry</topic><topic>Cyanobacteria - metabolism</topic><topic>Forecasting - methods</topic><topic>Molecular Structure</topic><topic>Multivariate analyses</topic><topic>Noncongeneric SAR</topic><topic>PASS program</topic><topic>Secondary metabolites</topic><topic>Software</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devillers, J.</creatorcontrib><creatorcontrib>Doré, J. C.</creatorcontrib><creatorcontrib>Guyot, M.</creatorcontrib><creatorcontrib>Poroikov, V.</creatorcontrib><creatorcontrib>Gloriozova, T.</creatorcontrib><creatorcontrib>Lagunin, A.</creatorcontrib><creatorcontrib>Filimonov, D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>SAR and QSAR in environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devillers, J.</au><au>Doré, J. C.</au><au>Guyot, M.</au><au>Poroikov, V.</au><au>Gloriozova, T.</au><au>Lagunin, A.</au><au>Filimonov, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of biological activity profiles of cyanobacterial secondary metabolites</atitle><jtitle>SAR and QSAR in environmental research</jtitle><addtitle>SAR QSAR Environ Res</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>18</volume><issue>7-8</issue><spage>629</spage><epage>643</epage><pages>629-643</pages><issn>1062-936X</issn><eissn>1029-046X</eissn><abstract>Over the past decade cyanobacteria have become an interesting source of new classes of pharmacologically active natural products. Some cyanobacterial secondary metabolites (CSMs) are also well known for their toxic effects on living species. The PASS (Prediction of Activity Spectra for Substances) computer program, which is able to simultaneously predict more than one thousand biological and toxicological activities from only the structural formulas of the chemicals, was used to predict the biological activity profile of 681 CSMs. Multivariate methods were employed to structure and analyse this wealth of biological and chemical information. PASS predictions were successfully compared to the available information on the pharmacological and toxicological activity of these compounds.</abstract><cop>England</cop><pub>Taylor &amp; Francis Group</pub><pmid>18038364</pmid><doi>10.1080/10629360701698704</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-936X
ispartof SAR and QSAR in environmental research, 2007-10, Vol.18 (7-8), p.629-643
issn 1062-936X
1029-046X
language eng
recordid cdi_crossref_primary_10_1080_10629360701698704
source Taylor and Francis Science and Technology Collection
subjects Biological Products - chemistry
Biological Products - isolation & purification
Biological Products - pharmacology
Cyanobacteria
Cyanobacteria - chemistry
Cyanobacteria - metabolism
Forecasting - methods
Molecular Structure
Multivariate analyses
Noncongeneric SAR
PASS program
Secondary metabolites
Software
Structure-Activity Relationship
title Prediction of biological activity profiles of cyanobacterial secondary metabolites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20biological%20activity%20profiles%20of%20cyanobacterial%20secondary%20metabolites&rft.jtitle=SAR%20and%20QSAR%20in%20environmental%20research&rft.au=Devillers,%20J.&rft.date=2007-10-01&rft.volume=18&rft.issue=7-8&rft.spage=629&rft.epage=643&rft.pages=629-643&rft.issn=1062-936X&rft.eissn=1029-046X&rft_id=info:doi/10.1080/10629360701698704&rft_dat=%3Cpubmed_cross%3E18038364%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-6fab7473c63786b8573deb688b45a3db553fdc7d446c8d91e3e065a42575ab893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/18038364&rfr_iscdi=true