Loading…

Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials

We obtain the differential operator realization for the annihilation operator A of generalized Heisenberg algebra corresponding to the given polynomial system. The important special case of orthogonal polynomial systems, for which the matrix of the operator A in l 2 ( Z + ) has only off-diagonal ele...

Full description

Saved in:
Bibliographic Details
Published in:Integral transforms and special functions 2002-01, Vol.13 (6), p.547-554
Main Authors: Borzov, V. V., Damaskinsky, E. V.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c332t-c6a86f86458d0bc72f4fafead516459b6c7628215f886885ae1a9e1eee3967433
cites
container_end_page 554
container_issue 6
container_start_page 547
container_title Integral transforms and special functions
container_volume 13
creator Borzov, V. V.
Damaskinsky, E. V.
description We obtain the differential operator realization for the annihilation operator A of generalized Heisenberg algebra corresponding to the given polynomial system. The important special case of orthogonal polynomial systems, for which the matrix of the operator A in l 2 ( Z + ) has only off-diagonal elements on the first upper diagonal different from zero, is considered. The known generalized Hermite polynomials give us an example of such an orthonormal system. The suggested approach can be applied to a similar investigation of various "deformed" polynomial systems.
doi_str_mv 10.1080/10652460213751
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10652460213751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10652460213751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-c6a86f86458d0bc72f4fafead516459b6c7628215f886885ae1a9e1eee3967433</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmNw5Zw_0JG0TZoep_ExpElDfJwrr3XUQJtMaSQoN_45mYaEQEIcLNuv_diyCTnnbMaZYhecSZHmkqU8KwQ_IBOeFzJRackPYxyLSayWx-RkGJ4Z45koxIR83CN05h2CcZY6TUOLdG6taU2319Zb9BCcpzoaxHyoTdftlGRlXpA-jEPAnm5GCvTSaI0ebTDQfYNgG7pE35uAyaI1LXigd64bretj33BKjnR0ePblp-Tp-upxsUxW65vbxXyV1FmWhqSWoKRWMheqYZu6SHWuQSM0gket3Mi6kKlKudBKSaUEIIcSOSJmpSzyLJuS2X5u7d0weNTV1pse_FhxVu0eWP18YATyPWBsvL2HV-e7pgowds5rD7Y2wy-kCm8hYuW_WPbHyk_hIoj6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials</title><source>Taylor and Francis Science and Technology Collection</source><creator>Borzov, V. V. ; Damaskinsky, E. V.</creator><creatorcontrib>Borzov, V. V. ; Damaskinsky, E. V.</creatorcontrib><description>We obtain the differential operator realization for the annihilation operator A of generalized Heisenberg algebra corresponding to the given polynomial system. The important special case of orthogonal polynomial systems, for which the matrix of the operator A in l 2 ( Z + ) has only off-diagonal elements on the first upper diagonal different from zero, is considered. The known generalized Hermite polynomials give us an example of such an orthonormal system. The suggested approach can be applied to a similar investigation of various "deformed" polynomial systems.</description><identifier>ISSN: 1065-2469</identifier><identifier>EISSN: 1476-8291</identifier><identifier>DOI: 10.1080/10652460213751</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Annihilation Operator ; Generalized Oscillator Algebras ; Hermite-Chihara Polynomials ; Orthogonal Polynomials</subject><ispartof>Integral transforms and special functions, 2002-01, Vol.13 (6), p.547-554</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-c6a86f86458d0bc72f4fafead516459b6c7628215f886885ae1a9e1eee3967433</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Borzov, V. V.</creatorcontrib><creatorcontrib>Damaskinsky, E. V.</creatorcontrib><title>Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials</title><title>Integral transforms and special functions</title><description>We obtain the differential operator realization for the annihilation operator A of generalized Heisenberg algebra corresponding to the given polynomial system. The important special case of orthogonal polynomial systems, for which the matrix of the operator A in l 2 ( Z + ) has only off-diagonal elements on the first upper diagonal different from zero, is considered. The known generalized Hermite polynomials give us an example of such an orthonormal system. The suggested approach can be applied to a similar investigation of various "deformed" polynomial systems.</description><subject>Annihilation Operator</subject><subject>Generalized Oscillator Algebras</subject><subject>Hermite-Chihara Polynomials</subject><subject>Orthogonal Polynomials</subject><issn>1065-2469</issn><issn>1476-8291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmNw5Zw_0JG0TZoep_ExpElDfJwrr3XUQJtMaSQoN_45mYaEQEIcLNuv_diyCTnnbMaZYhecSZHmkqU8KwQ_IBOeFzJRackPYxyLSayWx-RkGJ4Z45koxIR83CN05h2CcZY6TUOLdG6taU2319Zb9BCcpzoaxHyoTdftlGRlXpA-jEPAnm5GCvTSaI0ebTDQfYNgG7pE35uAyaI1LXigd64bretj33BKjnR0ePblp-Tp-upxsUxW65vbxXyV1FmWhqSWoKRWMheqYZu6SHWuQSM0gket3Mi6kKlKudBKSaUEIIcSOSJmpSzyLJuS2X5u7d0weNTV1pse_FhxVu0eWP18YATyPWBsvL2HV-e7pgowds5rD7Y2wy-kCm8hYuW_WPbHyk_hIoj6</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Borzov, V. V.</creator><creator>Damaskinsky, E. V.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020101</creationdate><title>Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials</title><author>Borzov, V. V. ; Damaskinsky, E. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-c6a86f86458d0bc72f4fafead516459b6c7628215f886885ae1a9e1eee3967433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Annihilation Operator</topic><topic>Generalized Oscillator Algebras</topic><topic>Hermite-Chihara Polynomials</topic><topic>Orthogonal Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borzov, V. V.</creatorcontrib><creatorcontrib>Damaskinsky, E. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Integral transforms and special functions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borzov, V. V.</au><au>Damaskinsky, E. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials</atitle><jtitle>Integral transforms and special functions</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>13</volume><issue>6</issue><spage>547</spage><epage>554</epage><pages>547-554</pages><issn>1065-2469</issn><eissn>1476-8291</eissn><abstract>We obtain the differential operator realization for the annihilation operator A of generalized Heisenberg algebra corresponding to the given polynomial system. The important special case of orthogonal polynomial systems, for which the matrix of the operator A in l 2 ( Z + ) has only off-diagonal elements on the first upper diagonal different from zero, is considered. The known generalized Hermite polynomials give us an example of such an orthonormal system. The suggested approach can be applied to a similar investigation of various "deformed" polynomial systems.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10652460213751</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1065-2469
ispartof Integral transforms and special functions, 2002-01, Vol.13 (6), p.547-554
issn 1065-2469
1476-8291
language eng
recordid cdi_crossref_primary_10_1080_10652460213751
source Taylor and Francis Science and Technology Collection
subjects Annihilation Operator
Generalized Oscillator Algebras
Hermite-Chihara Polynomials
Orthogonal Polynomials
title Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20the%20Annihilation%20Operator%20for%20an%20Oscillator-Like%20System%20by%20a%20Differential%20Operator%20and%20Hermite-Chihara%20Polynomials&rft.jtitle=Integral%20transforms%20and%20special%20functions&rft.au=Borzov,%20V.%20V.&rft.date=2002-01-01&rft.volume=13&rft.issue=6&rft.spage=547&rft.epage=554&rft.pages=547-554&rft.issn=1065-2469&rft.eissn=1476-8291&rft_id=info:doi/10.1080/10652460213751&rft_dat=%3Ccrossref_infor%3E10_1080_10652460213751%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-c6a86f86458d0bc72f4fafead516459b6c7628215f886885ae1a9e1eee3967433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true