Loading…
Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials
We obtain the differential operator realization for the annihilation operator A of generalized Heisenberg algebra corresponding to the given polynomial system. The important special case of orthogonal polynomial systems, for which the matrix of the operator A in l 2 ( Z + ) has only off-diagonal ele...
Saved in:
Published in: | Integral transforms and special functions 2002-01, Vol.13 (6), p.547-554 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c332t-c6a86f86458d0bc72f4fafead516459b6c7628215f886885ae1a9e1eee3967433 |
---|---|
cites | |
container_end_page | 554 |
container_issue | 6 |
container_start_page | 547 |
container_title | Integral transforms and special functions |
container_volume | 13 |
creator | Borzov, V. V. Damaskinsky, E. V. |
description | We obtain the differential operator realization for the annihilation operator A of generalized Heisenberg algebra corresponding to the given polynomial system. The important special case of orthogonal polynomial systems, for which the matrix of the operator A in l 2 ( Z + ) has only off-diagonal elements on the first upper diagonal different from zero, is considered. The known generalized Hermite polynomials give us an example of such an orthonormal system. The suggested approach can be applied to a similar investigation of various "deformed" polynomial systems. |
doi_str_mv | 10.1080/10652460213751 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10652460213751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10652460213751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-c6a86f86458d0bc72f4fafead516459b6c7628215f886885ae1a9e1eee3967433</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmNw5Zw_0JG0TZoep_ExpElDfJwrr3XUQJtMaSQoN_45mYaEQEIcLNuv_diyCTnnbMaZYhecSZHmkqU8KwQ_IBOeFzJRackPYxyLSayWx-RkGJ4Z45koxIR83CN05h2CcZY6TUOLdG6taU2319Zb9BCcpzoaxHyoTdftlGRlXpA-jEPAnm5GCvTSaI0ebTDQfYNgG7pE35uAyaI1LXigd64bretj33BKjnR0ePblp-Tp-upxsUxW65vbxXyV1FmWhqSWoKRWMheqYZu6SHWuQSM0gket3Mi6kKlKudBKSaUEIIcSOSJmpSzyLJuS2X5u7d0weNTV1pse_FhxVu0eWP18YATyPWBsvL2HV-e7pgowds5rD7Y2wy-kCm8hYuW_WPbHyk_hIoj6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials</title><source>Taylor and Francis Science and Technology Collection</source><creator>Borzov, V. V. ; Damaskinsky, E. V.</creator><creatorcontrib>Borzov, V. V. ; Damaskinsky, E. V.</creatorcontrib><description>We obtain the differential operator realization for the annihilation operator A of generalized Heisenberg algebra corresponding to the given polynomial system. The important special case of orthogonal polynomial systems, for which the matrix of the operator A in l 2 ( Z + ) has only off-diagonal elements on the first upper diagonal different from zero, is considered. The known generalized Hermite polynomials give us an example of such an orthonormal system. The suggested approach can be applied to a similar investigation of various "deformed" polynomial systems.</description><identifier>ISSN: 1065-2469</identifier><identifier>EISSN: 1476-8291</identifier><identifier>DOI: 10.1080/10652460213751</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Annihilation Operator ; Generalized Oscillator Algebras ; Hermite-Chihara Polynomials ; Orthogonal Polynomials</subject><ispartof>Integral transforms and special functions, 2002-01, Vol.13 (6), p.547-554</ispartof><rights>Copyright Taylor & Francis Group, LLC 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-c6a86f86458d0bc72f4fafead516459b6c7628215f886885ae1a9e1eee3967433</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Borzov, V. V.</creatorcontrib><creatorcontrib>Damaskinsky, E. V.</creatorcontrib><title>Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials</title><title>Integral transforms and special functions</title><description>We obtain the differential operator realization for the annihilation operator A of generalized Heisenberg algebra corresponding to the given polynomial system. The important special case of orthogonal polynomial systems, for which the matrix of the operator A in l 2 ( Z + ) has only off-diagonal elements on the first upper diagonal different from zero, is considered. The known generalized Hermite polynomials give us an example of such an orthonormal system. The suggested approach can be applied to a similar investigation of various "deformed" polynomial systems.</description><subject>Annihilation Operator</subject><subject>Generalized Oscillator Algebras</subject><subject>Hermite-Chihara Polynomials</subject><subject>Orthogonal Polynomials</subject><issn>1065-2469</issn><issn>1476-8291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmNw5Zw_0JG0TZoep_ExpElDfJwrr3XUQJtMaSQoN_45mYaEQEIcLNuv_diyCTnnbMaZYhecSZHmkqU8KwQ_IBOeFzJRackPYxyLSayWx-RkGJ4Z45koxIR83CN05h2CcZY6TUOLdG6taU2319Zb9BCcpzoaxHyoTdftlGRlXpA-jEPAnm5GCvTSaI0ebTDQfYNgG7pE35uAyaI1LXigd64bretj33BKjnR0ePblp-Tp-upxsUxW65vbxXyV1FmWhqSWoKRWMheqYZu6SHWuQSM0gket3Mi6kKlKudBKSaUEIIcSOSJmpSzyLJuS2X5u7d0weNTV1pse_FhxVu0eWP18YATyPWBsvL2HV-e7pgowds5rD7Y2wy-kCm8hYuW_WPbHyk_hIoj6</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Borzov, V. V.</creator><creator>Damaskinsky, E. V.</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020101</creationdate><title>Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials</title><author>Borzov, V. V. ; Damaskinsky, E. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-c6a86f86458d0bc72f4fafead516459b6c7628215f886885ae1a9e1eee3967433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Annihilation Operator</topic><topic>Generalized Oscillator Algebras</topic><topic>Hermite-Chihara Polynomials</topic><topic>Orthogonal Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borzov, V. V.</creatorcontrib><creatorcontrib>Damaskinsky, E. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Integral transforms and special functions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borzov, V. V.</au><au>Damaskinsky, E. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials</atitle><jtitle>Integral transforms and special functions</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>13</volume><issue>6</issue><spage>547</spage><epage>554</epage><pages>547-554</pages><issn>1065-2469</issn><eissn>1476-8291</eissn><abstract>We obtain the differential operator realization for the annihilation operator A of generalized Heisenberg algebra corresponding to the given polynomial system. The important special case of orthogonal polynomial systems, for which the matrix of the operator A in l 2 ( Z + ) has only off-diagonal elements on the first upper diagonal different from zero, is considered. The known generalized Hermite polynomials give us an example of such an orthonormal system. The suggested approach can be applied to a similar investigation of various "deformed" polynomial systems.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/10652460213751</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-2469 |
ispartof | Integral transforms and special functions, 2002-01, Vol.13 (6), p.547-554 |
issn | 1065-2469 1476-8291 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10652460213751 |
source | Taylor and Francis Science and Technology Collection |
subjects | Annihilation Operator Generalized Oscillator Algebras Hermite-Chihara Polynomials Orthogonal Polynomials |
title | Realization of the Annihilation Operator for an Oscillator-Like System by a Differential Operator and Hermite-Chihara Polynomials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20the%20Annihilation%20Operator%20for%20an%20Oscillator-Like%20System%20by%20a%20Differential%20Operator%20and%20Hermite-Chihara%20Polynomials&rft.jtitle=Integral%20transforms%20and%20special%20functions&rft.au=Borzov,%20V.%20V.&rft.date=2002-01-01&rft.volume=13&rft.issue=6&rft.spage=547&rft.epage=554&rft.pages=547-554&rft.issn=1065-2469&rft.eissn=1476-8291&rft_id=info:doi/10.1080/10652460213751&rft_dat=%3Ccrossref_infor%3E10_1080_10652460213751%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-c6a86f86458d0bc72f4fafead516459b6c7628215f886885ae1a9e1eee3967433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |