Loading…
QbD approach to downstream processing of spray-dried amorphous solid dispersions - a case study
In the current study, we demonstrate a structured approach to downstream process development for spray dried amorphous solid dispersions. Direct compression is generally not suitable due to typically poor flow of spray dried powders in tablets. Roller compaction (RC) is therefore the method of choic...
Saved in:
Published in: | Pharmaceutical development and technology 2021-03, Vol.26 (3), p.269-277 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the current study, we demonstrate a structured approach to downstream process development for spray dried amorphous solid dispersions. Direct compression is generally not suitable due to typically poor flow of spray dried powders in tablets. Roller compaction (RC) is therefore the method of choice to enable spray dried dispersion downstream processing. Here, a structured experimental design of RC process parameters was used. The objective was to identify process conditions that lead to improved powder flow without compromising tablet robustness. Ten blends were compacted using different process parameters, and subsequently compressed into tablets. The impact of process parameters on granules and tablet properties was analyzed. We demonstrate that compaction force, gap and mesh aperture have major impact on RC outcomes. A combination of large gap and low force was identified as optimum combination of RC process parameters leading to powder flow improvement that could guarantee low tablet weight variation and at the same prevented loss of blend compressibility. |
---|---|
ISSN: | 1083-7450 1097-9867 |
DOI: | 10.1080/10837450.2020.1863985 |