Loading…
Measuring the economic value of deer hunting: comparing estimates from survey and harvest check-in data
Economists typically estimate the economic value of wildlife-associated recreation by applying valuation methods to individual data collected from mail and internet surveys, however, surveys are limited to what respondents choose to report as well as who chooses to respond. Government records and mo...
Saved in:
Published in: | Human dimensions of wildlife 2024-11, Vol.29 (6), p.545-561 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c286t-87286bcafbc24e1aced708f615efaacaba5aeb589dd28ec4789c5b68e5200acd3 |
container_end_page | 561 |
container_issue | 6 |
container_start_page | 545 |
container_title | Human dimensions of wildlife |
container_volume | 29 |
creator | Boehm, Luke Chakraborti, Lopamudra Melstrom, Richard T. Piccolo, Nicolina Reeling, Carson |
description | Economists typically estimate the economic value of wildlife-associated recreation by applying valuation methods to individual data collected from mail and internet surveys, however, surveys are limited to what respondents choose to report as well as who chooses to respond. Government records and mobile applications that track recreational activity can also provide data for economic valuation if activities can be linked back to individual decision-makers. One particularly intriguing source of government information is harvest check-in data, which tracks hunting success. In this paper, we examine the comparability of economic values based on surveys and harvest check-in data using a site choice model. While we find evidence the datasets yield different models, large and substantial differences are the exception rather than the rule, especially once we accurately account for individual trip costs. Our findings support the conclusion that data generated through surveys and harvest records are capable of producing similar valuation estimates. |
doi_str_mv | 10.1080/10871209.2023.2283070 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10871209_2023_2283070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118583139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-87286bcafbc24e1aced708f615efaacaba5aeb589dd28ec4789c5b68e5200acd3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwCUiWWKf4UScOK1DFSypiAxI7a-KM25QkLnZS1L_HpWXLZu4sztyZuUlyyeiEUUWvY8kZp8WEUy4mnCtBc3qUjJgUImVSfRzHPjLpDjpNzkJYUcqEzLJRsnhBCIOvuwXpl0jQuM61tSEbaAYkzpIK0ZPl0PURuSHGtWv4pTH0dQs9BmK9a0n02OCWQFeRJcQ29MQs0XymdUcq6OE8ObHQBLw46Dh5f7h_mz2l89fH59ndPDVcZX2q8iilAVsaPkUGBqucKpsxiRbAQAkSsJSqqCqu0ExzVRhZZgolpxRMJcbJ1d537d3XEM_QKzf4Lq7UgjEllWCiiJTcU8a7EDxavfbxG7_VjOpdpvovU73LVB8yjXO3-7m6s8638O18U-keto3z1kNn6t2afy1-AI-MgA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118583139</pqid></control><display><type>article</type><title>Measuring the economic value of deer hunting: comparing estimates from survey and harvest check-in data</title><source>Taylor and Francis Science and Technology Collection</source><creator>Boehm, Luke ; Chakraborti, Lopamudra ; Melstrom, Richard T. ; Piccolo, Nicolina ; Reeling, Carson</creator><creatorcontrib>Boehm, Luke ; Chakraborti, Lopamudra ; Melstrom, Richard T. ; Piccolo, Nicolina ; Reeling, Carson</creatorcontrib><description>Economists typically estimate the economic value of wildlife-associated recreation by applying valuation methods to individual data collected from mail and internet surveys, however, surveys are limited to what respondents choose to report as well as who chooses to respond. Government records and mobile applications that track recreational activity can also provide data for economic valuation if activities can be linked back to individual decision-makers. One particularly intriguing source of government information is harvest check-in data, which tracks hunting success. In this paper, we examine the comparability of economic values based on surveys and harvest check-in data using a site choice model. While we find evidence the datasets yield different models, large and substantial differences are the exception rather than the rule, especially once we accurately account for individual trip costs. Our findings support the conclusion that data generated through surveys and harvest records are capable of producing similar valuation estimates.</description><identifier>ISSN: 1087-1209</identifier><identifier>EISSN: 1533-158X</identifier><identifier>DOI: 10.1080/10871209.2023.2283070</identifier><language>eng</language><publisher>Philadelphia: Routledge</publisher><subject>Agriculture ; Applications programs ; discrete choice model ; Economics ; Estimates ; habitat conservation ; Hunting ; Mobile computing ; nonmarket valuation ; Polls & surveys ; Surveys ; Trip estimation ; Wildlife</subject><ispartof>Human dimensions of wildlife, 2024-11, Vol.29 (6), p.545-561</ispartof><rights>2023 Taylor & Francis Group, LLC 2023</rights><rights>2023 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-87286bcafbc24e1aced708f615efaacaba5aeb589dd28ec4789c5b68e5200acd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Boehm, Luke</creatorcontrib><creatorcontrib>Chakraborti, Lopamudra</creatorcontrib><creatorcontrib>Melstrom, Richard T.</creatorcontrib><creatorcontrib>Piccolo, Nicolina</creatorcontrib><creatorcontrib>Reeling, Carson</creatorcontrib><title>Measuring the economic value of deer hunting: comparing estimates from survey and harvest check-in data</title><title>Human dimensions of wildlife</title><description>Economists typically estimate the economic value of wildlife-associated recreation by applying valuation methods to individual data collected from mail and internet surveys, however, surveys are limited to what respondents choose to report as well as who chooses to respond. Government records and mobile applications that track recreational activity can also provide data for economic valuation if activities can be linked back to individual decision-makers. One particularly intriguing source of government information is harvest check-in data, which tracks hunting success. In this paper, we examine the comparability of economic values based on surveys and harvest check-in data using a site choice model. While we find evidence the datasets yield different models, large and substantial differences are the exception rather than the rule, especially once we accurately account for individual trip costs. Our findings support the conclusion that data generated through surveys and harvest records are capable of producing similar valuation estimates.</description><subject>Agriculture</subject><subject>Applications programs</subject><subject>discrete choice model</subject><subject>Economics</subject><subject>Estimates</subject><subject>habitat conservation</subject><subject>Hunting</subject><subject>Mobile computing</subject><subject>nonmarket valuation</subject><subject>Polls & surveys</subject><subject>Surveys</subject><subject>Trip estimation</subject><subject>Wildlife</subject><issn>1087-1209</issn><issn>1533-158X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwCUiWWKf4UScOK1DFSypiAxI7a-KM25QkLnZS1L_HpWXLZu4sztyZuUlyyeiEUUWvY8kZp8WEUy4mnCtBc3qUjJgUImVSfRzHPjLpDjpNzkJYUcqEzLJRsnhBCIOvuwXpl0jQuM61tSEbaAYkzpIK0ZPl0PURuSHGtWv4pTH0dQs9BmK9a0n02OCWQFeRJcQ29MQs0XymdUcq6OE8ObHQBLw46Dh5f7h_mz2l89fH59ndPDVcZX2q8iilAVsaPkUGBqucKpsxiRbAQAkSsJSqqCqu0ExzVRhZZgolpxRMJcbJ1d537d3XEM_QKzf4Lq7UgjEllWCiiJTcU8a7EDxavfbxG7_VjOpdpvovU73LVB8yjXO3-7m6s8638O18U-keto3z1kNn6t2afy1-AI-MgA8</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Boehm, Luke</creator><creator>Chakraborti, Lopamudra</creator><creator>Melstrom, Richard T.</creator><creator>Piccolo, Nicolina</creator><creator>Reeling, Carson</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20241101</creationdate><title>Measuring the economic value of deer hunting: comparing estimates from survey and harvest check-in data</title><author>Boehm, Luke ; Chakraborti, Lopamudra ; Melstrom, Richard T. ; Piccolo, Nicolina ; Reeling, Carson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-87286bcafbc24e1aced708f615efaacaba5aeb589dd28ec4789c5b68e5200acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Applications programs</topic><topic>discrete choice model</topic><topic>Economics</topic><topic>Estimates</topic><topic>habitat conservation</topic><topic>Hunting</topic><topic>Mobile computing</topic><topic>nonmarket valuation</topic><topic>Polls & surveys</topic><topic>Surveys</topic><topic>Trip estimation</topic><topic>Wildlife</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boehm, Luke</creatorcontrib><creatorcontrib>Chakraborti, Lopamudra</creatorcontrib><creatorcontrib>Melstrom, Richard T.</creatorcontrib><creatorcontrib>Piccolo, Nicolina</creatorcontrib><creatorcontrib>Reeling, Carson</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Human dimensions of wildlife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehm, Luke</au><au>Chakraborti, Lopamudra</au><au>Melstrom, Richard T.</au><au>Piccolo, Nicolina</au><au>Reeling, Carson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the economic value of deer hunting: comparing estimates from survey and harvest check-in data</atitle><jtitle>Human dimensions of wildlife</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>29</volume><issue>6</issue><spage>545</spage><epage>561</epage><pages>545-561</pages><issn>1087-1209</issn><eissn>1533-158X</eissn><abstract>Economists typically estimate the economic value of wildlife-associated recreation by applying valuation methods to individual data collected from mail and internet surveys, however, surveys are limited to what respondents choose to report as well as who chooses to respond. Government records and mobile applications that track recreational activity can also provide data for economic valuation if activities can be linked back to individual decision-makers. One particularly intriguing source of government information is harvest check-in data, which tracks hunting success. In this paper, we examine the comparability of economic values based on surveys and harvest check-in data using a site choice model. While we find evidence the datasets yield different models, large and substantial differences are the exception rather than the rule, especially once we accurately account for individual trip costs. Our findings support the conclusion that data generated through surveys and harvest records are capable of producing similar valuation estimates.</abstract><cop>Philadelphia</cop><pub>Routledge</pub><doi>10.1080/10871209.2023.2283070</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-1209 |
ispartof | Human dimensions of wildlife, 2024-11, Vol.29 (6), p.545-561 |
issn | 1087-1209 1533-158X |
language | eng |
recordid | cdi_crossref_primary_10_1080_10871209_2023_2283070 |
source | Taylor and Francis Science and Technology Collection |
subjects | Agriculture Applications programs discrete choice model Economics Estimates habitat conservation Hunting Mobile computing nonmarket valuation Polls & surveys Surveys Trip estimation Wildlife |
title | Measuring the economic value of deer hunting: comparing estimates from survey and harvest check-in data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20economic%20value%20of%20deer%20hunting:%20comparing%20estimates%20from%20survey%20and%20harvest%20check-in%20data&rft.jtitle=Human%20dimensions%20of%20wildlife&rft.au=Boehm,%20Luke&rft.date=2024-11-01&rft.volume=29&rft.issue=6&rft.spage=545&rft.epage=561&rft.pages=545-561&rft.issn=1087-1209&rft.eissn=1533-158X&rft_id=info:doi/10.1080/10871209.2023.2283070&rft_dat=%3Cproquest_cross%3E3118583139%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-87286bcafbc24e1aced708f615efaacaba5aeb589dd28ec4789c5b68e5200acd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3118583139&rft_id=info:pmid/&rfr_iscdi=true |