Loading…
Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach
Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this st...
Saved in:
Published in: | Petroleum science and technology 2019-08, Vol.37 (16), p.1861-1867 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Precipitation of heavy hydrocarbons, particularly asphaltenes, is the reason for numerous operational and production problems in the petroleum industry. Hence, knowing the amount of asphaltene precipitation is a critical commission for petroleum engineers to overcome its problems. The aim of this study was to predict the amount of asphaltene precipitation as a function of temperature, dilution ratio, and molecular weight of different n-alkanes utilizing radial basis function artificial neural network (RBF-ANN). Additionally, this model has been compared with previous correlations, and its great accuracy was proved to predict the precipitated asphaltene. The values of R-squared and mean squared error obtained were 0.998 and 0.007, respectively. The efforts confirmed brilliant forecasting skill of RBF-ANN for the approximation of the precipitated asphaltene as a function of temperature, dilution ratio, and molecular weight of different n-alkanes. |
---|---|
ISSN: | 1091-6466 1532-2459 |
DOI: | 10.1080/10916466.2017.1289222 |