Loading…
The effects of naturally occurring acids on the surface properties of chrysotile asbestos
Chrysotile asbestos is considered an environmental health hazard. It is postulated that the surface of chrysotile, with its inherent positive charge and chemical content of trace transition metals within the mineral is a causative factor of the concern. Weathering may reduce the negative health effe...
Saved in:
Published in: | Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering Toxic/hazardous substances & environmental engineering, 2014-10, Vol.49 (12), p.1445-1452 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43 |
container_end_page | 1452 |
container_issue | 12 |
container_start_page | 1445 |
container_title | Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering |
container_volume | 49 |
creator | Holmes, Emma P. Lavkulich, L.M. (Les) |
description | Chrysotile asbestos is considered an environmental health hazard. It is postulated that the surface of chrysotile, with its inherent positive charge and chemical content of trace transition metals within the mineral is a causative factor of the concern. Weathering may reduce the negative health effects of chrysotile asbestos, by alteration of the outer brucite layer of the chrysotile. To assess the changes in the surface properties of chrysotile asbestos by simulated weathering, chrysotile was treated with oxalic, hydrochloric, and carbonic acids. Naturally occurring chrysotile, from a mine site and serpentinitic stream sediments from the Sumas River were analyzed and compared. Oxalic acid, a chelating acid, was the most effective at extracting the majority of the trace elements present in the chrysotile, reducing their positive surface charge and producing visible changes at the surface of the fibers as shown by Field Emission Scanning Electron Microsopy (FESEM). Carbonic acid had little effect on the surface properties. Stream environments had minor detectable effects on the surface properties on the chrysotile stream sediments. |
doi_str_mv | 10.1080/10934529.2014.928558 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10934529_2014_928558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1550078211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43</originalsourceid><addsrcrecordid>eNqN0c9LHDEUB_BQlPqj_Q9EBqTgZdYkk0ySUxFpqyB4sYeewksmqSPZyTaZQfa_b8bdbcGDekogn_fyHl-ETgheECzxBcGqYZyqBcWELRSVnMsP6JDwhtaMELFX7oXUszlARzk_YkxkQ_hHdEA5FlQIcYh-3T-4ynnv7Jir6KsBxilBCOsqWjul1A-_K7B9Vx6Haiw2T8mDddUqxZVLY--ey-xDWuc49sFVkI3LY8yf0L6HkN3n7XmMfn7_dn91Xd_e_bi5urytLZNirJUHIQzYRpiWGqsU94xyQztmnFAgWyGhNa31RtnyKjuFSSs8B8xYU2xzjM43fctEf6bytV722boQYHBxyrpowmXDW_E25W0rGWWKvoNyjIWkhBR69oI-xikNZedZUcIYlbNiG2VTzDk5r1epX0Jaa4L1HKjeBarnQPUm0FJ2um0-maXr_hXtEizgyxZAthB8gsH2-b-TQipF5oW-blw_-JiW8BRT6PQI6xDTrqh5dZS_PHy6_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552144281</pqid></control><display><type>article</type><title>The effects of naturally occurring acids on the surface properties of chrysotile asbestos</title><source>Taylor and Francis Science and Technology Collection</source><creator>Holmes, Emma P. ; Lavkulich, L.M. (Les)</creator><creatorcontrib>Holmes, Emma P. ; Lavkulich, L.M. (Les)</creatorcontrib><description>Chrysotile asbestos is considered an environmental health hazard. It is postulated that the surface of chrysotile, with its inherent positive charge and chemical content of trace transition metals within the mineral is a causative factor of the concern. Weathering may reduce the negative health effects of chrysotile asbestos, by alteration of the outer brucite layer of the chrysotile. To assess the changes in the surface properties of chrysotile asbestos by simulated weathering, chrysotile was treated with oxalic, hydrochloric, and carbonic acids. Naturally occurring chrysotile, from a mine site and serpentinitic stream sediments from the Sumas River were analyzed and compared. Oxalic acid, a chelating acid, was the most effective at extracting the majority of the trace elements present in the chrysotile, reducing their positive surface charge and producing visible changes at the surface of the fibers as shown by Field Emission Scanning Electron Microsopy (FESEM). Carbonic acid had little effect on the surface properties. Stream environments had minor detectable effects on the surface properties on the chrysotile stream sediments.</description><identifier>ISSN: 1093-4529</identifier><identifier>EISSN: 1532-4117</identifier><identifier>DOI: 10.1080/10934529.2014.928558</identifier><identifier>PMID: 25072777</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor & Francis</publisher><subject>Acids ; Asbestos ; Asbestos, Serpentine - chemistry ; Carbonic acid ; Chelating Agents - chemistry ; Chrysotile ; Earth sciences ; Earth, ocean, space ; Effects ; electron microscopy ; Environmental health ; Exact sciences and technology ; Geologic Sediments - chemistry ; Health ; Mineralogy ; Mining ; Oxalic Acid - chemistry ; Rivers - chemistry ; Sediments ; Serpentinitic sediments ; Silicates ; Streams ; surface chemistry ; surface composition ; Surface properties ; Trace elements ; Trace Elements - chemistry ; Weather ; Weathering</subject><ispartof>Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 2014-10, Vol.49 (12), p.1445-1452</ispartof><rights>Copyright © Taylor & Francis Group, LLC 2014</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor & Francis Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43</citedby><cites>FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28789912$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25072777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holmes, Emma P.</creatorcontrib><creatorcontrib>Lavkulich, L.M. (Les)</creatorcontrib><title>The effects of naturally occurring acids on the surface properties of chrysotile asbestos</title><title>Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering</title><addtitle>J Environ Sci Health A Tox Hazard Subst Environ Eng</addtitle><description>Chrysotile asbestos is considered an environmental health hazard. It is postulated that the surface of chrysotile, with its inherent positive charge and chemical content of trace transition metals within the mineral is a causative factor of the concern. Weathering may reduce the negative health effects of chrysotile asbestos, by alteration of the outer brucite layer of the chrysotile. To assess the changes in the surface properties of chrysotile asbestos by simulated weathering, chrysotile was treated with oxalic, hydrochloric, and carbonic acids. Naturally occurring chrysotile, from a mine site and serpentinitic stream sediments from the Sumas River were analyzed and compared. Oxalic acid, a chelating acid, was the most effective at extracting the majority of the trace elements present in the chrysotile, reducing their positive surface charge and producing visible changes at the surface of the fibers as shown by Field Emission Scanning Electron Microsopy (FESEM). Carbonic acid had little effect on the surface properties. Stream environments had minor detectable effects on the surface properties on the chrysotile stream sediments.</description><subject>Acids</subject><subject>Asbestos</subject><subject>Asbestos, Serpentine - chemistry</subject><subject>Carbonic acid</subject><subject>Chelating Agents - chemistry</subject><subject>Chrysotile</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Effects</subject><subject>electron microscopy</subject><subject>Environmental health</subject><subject>Exact sciences and technology</subject><subject>Geologic Sediments - chemistry</subject><subject>Health</subject><subject>Mineralogy</subject><subject>Mining</subject><subject>Oxalic Acid - chemistry</subject><subject>Rivers - chemistry</subject><subject>Sediments</subject><subject>Serpentinitic sediments</subject><subject>Silicates</subject><subject>Streams</subject><subject>surface chemistry</subject><subject>surface composition</subject><subject>Surface properties</subject><subject>Trace elements</subject><subject>Trace Elements - chemistry</subject><subject>Weather</subject><subject>Weathering</subject><issn>1093-4529</issn><issn>1532-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0c9LHDEUB_BQlPqj_Q9EBqTgZdYkk0ySUxFpqyB4sYeewksmqSPZyTaZQfa_b8bdbcGDekogn_fyHl-ETgheECzxBcGqYZyqBcWELRSVnMsP6JDwhtaMELFX7oXUszlARzk_YkxkQ_hHdEA5FlQIcYh-3T-4ynnv7Jir6KsBxilBCOsqWjul1A-_K7B9Vx6Haiw2T8mDddUqxZVLY--ey-xDWuc49sFVkI3LY8yf0L6HkN3n7XmMfn7_dn91Xd_e_bi5urytLZNirJUHIQzYRpiWGqsU94xyQztmnFAgWyGhNa31RtnyKjuFSSs8B8xYU2xzjM43fctEf6bytV722boQYHBxyrpowmXDW_E25W0rGWWKvoNyjIWkhBR69oI-xikNZedZUcIYlbNiG2VTzDk5r1epX0Jaa4L1HKjeBarnQPUm0FJ2um0-maXr_hXtEizgyxZAthB8gsH2-b-TQipF5oW-blw_-JiW8BRT6PQI6xDTrqh5dZS_PHy6_A</recordid><startdate>20141015</startdate><enddate>20141015</enddate><creator>Holmes, Emma P.</creator><creator>Lavkulich, L.M. (Les)</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7SU</scope></search><sort><creationdate>20141015</creationdate><title>The effects of naturally occurring acids on the surface properties of chrysotile asbestos</title><author>Holmes, Emma P. ; Lavkulich, L.M. (Les)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acids</topic><topic>Asbestos</topic><topic>Asbestos, Serpentine - chemistry</topic><topic>Carbonic acid</topic><topic>Chelating Agents - chemistry</topic><topic>Chrysotile</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Effects</topic><topic>electron microscopy</topic><topic>Environmental health</topic><topic>Exact sciences and technology</topic><topic>Geologic Sediments - chemistry</topic><topic>Health</topic><topic>Mineralogy</topic><topic>Mining</topic><topic>Oxalic Acid - chemistry</topic><topic>Rivers - chemistry</topic><topic>Sediments</topic><topic>Serpentinitic sediments</topic><topic>Silicates</topic><topic>Streams</topic><topic>surface chemistry</topic><topic>surface composition</topic><topic>Surface properties</topic><topic>Trace elements</topic><topic>Trace Elements - chemistry</topic><topic>Weather</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, Emma P.</creatorcontrib><creatorcontrib>Lavkulich, L.M. (Les)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, Emma P.</au><au>Lavkulich, L.M. (Les)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of naturally occurring acids on the surface properties of chrysotile asbestos</atitle><jtitle>Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering</jtitle><addtitle>J Environ Sci Health A Tox Hazard Subst Environ Eng</addtitle><date>2014-10-15</date><risdate>2014</risdate><volume>49</volume><issue>12</issue><spage>1445</spage><epage>1452</epage><pages>1445-1452</pages><issn>1093-4529</issn><eissn>1532-4117</eissn><abstract>Chrysotile asbestos is considered an environmental health hazard. It is postulated that the surface of chrysotile, with its inherent positive charge and chemical content of trace transition metals within the mineral is a causative factor of the concern. Weathering may reduce the negative health effects of chrysotile asbestos, by alteration of the outer brucite layer of the chrysotile. To assess the changes in the surface properties of chrysotile asbestos by simulated weathering, chrysotile was treated with oxalic, hydrochloric, and carbonic acids. Naturally occurring chrysotile, from a mine site and serpentinitic stream sediments from the Sumas River were analyzed and compared. Oxalic acid, a chelating acid, was the most effective at extracting the majority of the trace elements present in the chrysotile, reducing their positive surface charge and producing visible changes at the surface of the fibers as shown by Field Emission Scanning Electron Microsopy (FESEM). Carbonic acid had little effect on the surface properties. Stream environments had minor detectable effects on the surface properties on the chrysotile stream sediments.</abstract><cop>Philadelphia, PA</cop><pub>Taylor & Francis</pub><pmid>25072777</pmid><doi>10.1080/10934529.2014.928558</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-4529 |
ispartof | Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 2014-10, Vol.49 (12), p.1445-1452 |
issn | 1093-4529 1532-4117 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10934529_2014_928558 |
source | Taylor and Francis Science and Technology Collection |
subjects | Acids Asbestos Asbestos, Serpentine - chemistry Carbonic acid Chelating Agents - chemistry Chrysotile Earth sciences Earth, ocean, space Effects electron microscopy Environmental health Exact sciences and technology Geologic Sediments - chemistry Health Mineralogy Mining Oxalic Acid - chemistry Rivers - chemistry Sediments Serpentinitic sediments Silicates Streams surface chemistry surface composition Surface properties Trace elements Trace Elements - chemistry Weather Weathering |
title | The effects of naturally occurring acids on the surface properties of chrysotile asbestos |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20naturally%20occurring%20acids%20on%20the%20surface%20properties%20of%20chrysotile%20asbestos&rft.jtitle=Journal%20of%20environmental%20science%20and%20health.%20Part%20A,%20Toxic/hazardous%20substances%20&%20environmental%20engineering&rft.au=Holmes,%20Emma%20P.&rft.date=2014-10-15&rft.volume=49&rft.issue=12&rft.spage=1445&rft.epage=1452&rft.pages=1445-1452&rft.issn=1093-4529&rft.eissn=1532-4117&rft_id=info:doi/10.1080/10934529.2014.928558&rft_dat=%3Cproquest_cross%3E1550078211%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552144281&rft_id=info:pmid/25072777&rfr_iscdi=true |