Loading…

The effects of naturally occurring acids on the surface properties of chrysotile asbestos

Chrysotile asbestos is considered an environmental health hazard. It is postulated that the surface of chrysotile, with its inherent positive charge and chemical content of trace transition metals within the mineral is a causative factor of the concern. Weathering may reduce the negative health effe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering Toxic/hazardous substances & environmental engineering, 2014-10, Vol.49 (12), p.1445-1452
Main Authors: Holmes, Emma P., Lavkulich, L.M. (Les)
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43
cites cdi_FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43
container_end_page 1452
container_issue 12
container_start_page 1445
container_title Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering
container_volume 49
creator Holmes, Emma P.
Lavkulich, L.M. (Les)
description Chrysotile asbestos is considered an environmental health hazard. It is postulated that the surface of chrysotile, with its inherent positive charge and chemical content of trace transition metals within the mineral is a causative factor of the concern. Weathering may reduce the negative health effects of chrysotile asbestos, by alteration of the outer brucite layer of the chrysotile. To assess the changes in the surface properties of chrysotile asbestos by simulated weathering, chrysotile was treated with oxalic, hydrochloric, and carbonic acids. Naturally occurring chrysotile, from a mine site and serpentinitic stream sediments from the Sumas River were analyzed and compared. Oxalic acid, a chelating acid, was the most effective at extracting the majority of the trace elements present in the chrysotile, reducing their positive surface charge and producing visible changes at the surface of the fibers as shown by Field Emission Scanning Electron Microsopy (FESEM). Carbonic acid had little effect on the surface properties. Stream environments had minor detectable effects on the surface properties on the chrysotile stream sediments.
doi_str_mv 10.1080/10934529.2014.928558
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10934529_2014_928558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1550078211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43</originalsourceid><addsrcrecordid>eNqN0c9LHDEUB_BQlPqj_Q9EBqTgZdYkk0ySUxFpqyB4sYeewksmqSPZyTaZQfa_b8bdbcGDekogn_fyHl-ETgheECzxBcGqYZyqBcWELRSVnMsP6JDwhtaMELFX7oXUszlARzk_YkxkQ_hHdEA5FlQIcYh-3T-4ynnv7Jir6KsBxilBCOsqWjul1A-_K7B9Vx6Haiw2T8mDddUqxZVLY--ey-xDWuc49sFVkI3LY8yf0L6HkN3n7XmMfn7_dn91Xd_e_bi5urytLZNirJUHIQzYRpiWGqsU94xyQztmnFAgWyGhNa31RtnyKjuFSSs8B8xYU2xzjM43fctEf6bytV722boQYHBxyrpowmXDW_E25W0rGWWKvoNyjIWkhBR69oI-xikNZedZUcIYlbNiG2VTzDk5r1epX0Jaa4L1HKjeBarnQPUm0FJ2um0-maXr_hXtEizgyxZAthB8gsH2-b-TQipF5oW-blw_-JiW8BRT6PQI6xDTrqh5dZS_PHy6_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552144281</pqid></control><display><type>article</type><title>The effects of naturally occurring acids on the surface properties of chrysotile asbestos</title><source>Taylor and Francis Science and Technology Collection</source><creator>Holmes, Emma P. ; Lavkulich, L.M. (Les)</creator><creatorcontrib>Holmes, Emma P. ; Lavkulich, L.M. (Les)</creatorcontrib><description>Chrysotile asbestos is considered an environmental health hazard. It is postulated that the surface of chrysotile, with its inherent positive charge and chemical content of trace transition metals within the mineral is a causative factor of the concern. Weathering may reduce the negative health effects of chrysotile asbestos, by alteration of the outer brucite layer of the chrysotile. To assess the changes in the surface properties of chrysotile asbestos by simulated weathering, chrysotile was treated with oxalic, hydrochloric, and carbonic acids. Naturally occurring chrysotile, from a mine site and serpentinitic stream sediments from the Sumas River were analyzed and compared. Oxalic acid, a chelating acid, was the most effective at extracting the majority of the trace elements present in the chrysotile, reducing their positive surface charge and producing visible changes at the surface of the fibers as shown by Field Emission Scanning Electron Microsopy (FESEM). Carbonic acid had little effect on the surface properties. Stream environments had minor detectable effects on the surface properties on the chrysotile stream sediments.</description><identifier>ISSN: 1093-4529</identifier><identifier>EISSN: 1532-4117</identifier><identifier>DOI: 10.1080/10934529.2014.928558</identifier><identifier>PMID: 25072777</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis</publisher><subject>Acids ; Asbestos ; Asbestos, Serpentine - chemistry ; Carbonic acid ; Chelating Agents - chemistry ; Chrysotile ; Earth sciences ; Earth, ocean, space ; Effects ; electron microscopy ; Environmental health ; Exact sciences and technology ; Geologic Sediments - chemistry ; Health ; Mineralogy ; Mining ; Oxalic Acid - chemistry ; Rivers - chemistry ; Sediments ; Serpentinitic sediments ; Silicates ; Streams ; surface chemistry ; surface composition ; Surface properties ; Trace elements ; Trace Elements - chemistry ; Weather ; Weathering</subject><ispartof>Journal of environmental science and health. Part A, Toxic/hazardous substances &amp; environmental engineering, 2014-10, Vol.49 (12), p.1445-1452</ispartof><rights>Copyright © Taylor &amp; Francis Group, LLC 2014</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43</citedby><cites>FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28789912$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25072777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holmes, Emma P.</creatorcontrib><creatorcontrib>Lavkulich, L.M. (Les)</creatorcontrib><title>The effects of naturally occurring acids on the surface properties of chrysotile asbestos</title><title>Journal of environmental science and health. Part A, Toxic/hazardous substances &amp; environmental engineering</title><addtitle>J Environ Sci Health A Tox Hazard Subst Environ Eng</addtitle><description>Chrysotile asbestos is considered an environmental health hazard. It is postulated that the surface of chrysotile, with its inherent positive charge and chemical content of trace transition metals within the mineral is a causative factor of the concern. Weathering may reduce the negative health effects of chrysotile asbestos, by alteration of the outer brucite layer of the chrysotile. To assess the changes in the surface properties of chrysotile asbestos by simulated weathering, chrysotile was treated with oxalic, hydrochloric, and carbonic acids. Naturally occurring chrysotile, from a mine site and serpentinitic stream sediments from the Sumas River were analyzed and compared. Oxalic acid, a chelating acid, was the most effective at extracting the majority of the trace elements present in the chrysotile, reducing their positive surface charge and producing visible changes at the surface of the fibers as shown by Field Emission Scanning Electron Microsopy (FESEM). Carbonic acid had little effect on the surface properties. Stream environments had minor detectable effects on the surface properties on the chrysotile stream sediments.</description><subject>Acids</subject><subject>Asbestos</subject><subject>Asbestos, Serpentine - chemistry</subject><subject>Carbonic acid</subject><subject>Chelating Agents - chemistry</subject><subject>Chrysotile</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Effects</subject><subject>electron microscopy</subject><subject>Environmental health</subject><subject>Exact sciences and technology</subject><subject>Geologic Sediments - chemistry</subject><subject>Health</subject><subject>Mineralogy</subject><subject>Mining</subject><subject>Oxalic Acid - chemistry</subject><subject>Rivers - chemistry</subject><subject>Sediments</subject><subject>Serpentinitic sediments</subject><subject>Silicates</subject><subject>Streams</subject><subject>surface chemistry</subject><subject>surface composition</subject><subject>Surface properties</subject><subject>Trace elements</subject><subject>Trace Elements - chemistry</subject><subject>Weather</subject><subject>Weathering</subject><issn>1093-4529</issn><issn>1532-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0c9LHDEUB_BQlPqj_Q9EBqTgZdYkk0ySUxFpqyB4sYeewksmqSPZyTaZQfa_b8bdbcGDekogn_fyHl-ETgheECzxBcGqYZyqBcWELRSVnMsP6JDwhtaMELFX7oXUszlARzk_YkxkQ_hHdEA5FlQIcYh-3T-4ynnv7Jir6KsBxilBCOsqWjul1A-_K7B9Vx6Haiw2T8mDddUqxZVLY--ey-xDWuc49sFVkI3LY8yf0L6HkN3n7XmMfn7_dn91Xd_e_bi5urytLZNirJUHIQzYRpiWGqsU94xyQztmnFAgWyGhNa31RtnyKjuFSSs8B8xYU2xzjM43fctEf6bytV722boQYHBxyrpowmXDW_E25W0rGWWKvoNyjIWkhBR69oI-xikNZedZUcIYlbNiG2VTzDk5r1epX0Jaa4L1HKjeBarnQPUm0FJ2um0-maXr_hXtEizgyxZAthB8gsH2-b-TQipF5oW-blw_-JiW8BRT6PQI6xDTrqh5dZS_PHy6_A</recordid><startdate>20141015</startdate><enddate>20141015</enddate><creator>Holmes, Emma P.</creator><creator>Lavkulich, L.M. (Les)</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7SU</scope></search><sort><creationdate>20141015</creationdate><title>The effects of naturally occurring acids on the surface properties of chrysotile asbestos</title><author>Holmes, Emma P. ; Lavkulich, L.M. (Les)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acids</topic><topic>Asbestos</topic><topic>Asbestos, Serpentine - chemistry</topic><topic>Carbonic acid</topic><topic>Chelating Agents - chemistry</topic><topic>Chrysotile</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Effects</topic><topic>electron microscopy</topic><topic>Environmental health</topic><topic>Exact sciences and technology</topic><topic>Geologic Sediments - chemistry</topic><topic>Health</topic><topic>Mineralogy</topic><topic>Mining</topic><topic>Oxalic Acid - chemistry</topic><topic>Rivers - chemistry</topic><topic>Sediments</topic><topic>Serpentinitic sediments</topic><topic>Silicates</topic><topic>Streams</topic><topic>surface chemistry</topic><topic>surface composition</topic><topic>Surface properties</topic><topic>Trace elements</topic><topic>Trace Elements - chemistry</topic><topic>Weather</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, Emma P.</creatorcontrib><creatorcontrib>Lavkulich, L.M. (Les)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Journal of environmental science and health. Part A, Toxic/hazardous substances &amp; environmental engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, Emma P.</au><au>Lavkulich, L.M. (Les)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of naturally occurring acids on the surface properties of chrysotile asbestos</atitle><jtitle>Journal of environmental science and health. Part A, Toxic/hazardous substances &amp; environmental engineering</jtitle><addtitle>J Environ Sci Health A Tox Hazard Subst Environ Eng</addtitle><date>2014-10-15</date><risdate>2014</risdate><volume>49</volume><issue>12</issue><spage>1445</spage><epage>1452</epage><pages>1445-1452</pages><issn>1093-4529</issn><eissn>1532-4117</eissn><abstract>Chrysotile asbestos is considered an environmental health hazard. It is postulated that the surface of chrysotile, with its inherent positive charge and chemical content of trace transition metals within the mineral is a causative factor of the concern. Weathering may reduce the negative health effects of chrysotile asbestos, by alteration of the outer brucite layer of the chrysotile. To assess the changes in the surface properties of chrysotile asbestos by simulated weathering, chrysotile was treated with oxalic, hydrochloric, and carbonic acids. Naturally occurring chrysotile, from a mine site and serpentinitic stream sediments from the Sumas River were analyzed and compared. Oxalic acid, a chelating acid, was the most effective at extracting the majority of the trace elements present in the chrysotile, reducing their positive surface charge and producing visible changes at the surface of the fibers as shown by Field Emission Scanning Electron Microsopy (FESEM). Carbonic acid had little effect on the surface properties. Stream environments had minor detectable effects on the surface properties on the chrysotile stream sediments.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis</pub><pmid>25072777</pmid><doi>10.1080/10934529.2014.928558</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1093-4529
ispartof Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 2014-10, Vol.49 (12), p.1445-1452
issn 1093-4529
1532-4117
language eng
recordid cdi_crossref_primary_10_1080_10934529_2014_928558
source Taylor and Francis Science and Technology Collection
subjects Acids
Asbestos
Asbestos, Serpentine - chemistry
Carbonic acid
Chelating Agents - chemistry
Chrysotile
Earth sciences
Earth, ocean, space
Effects
electron microscopy
Environmental health
Exact sciences and technology
Geologic Sediments - chemistry
Health
Mineralogy
Mining
Oxalic Acid - chemistry
Rivers - chemistry
Sediments
Serpentinitic sediments
Silicates
Streams
surface chemistry
surface composition
Surface properties
Trace elements
Trace Elements - chemistry
Weather
Weathering
title The effects of naturally occurring acids on the surface properties of chrysotile asbestos
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20naturally%20occurring%20acids%20on%20the%20surface%20properties%20of%20chrysotile%20asbestos&rft.jtitle=Journal%20of%20environmental%20science%20and%20health.%20Part%20A,%20Toxic/hazardous%20substances%20&%20environmental%20engineering&rft.au=Holmes,%20Emma%20P.&rft.date=2014-10-15&rft.volume=49&rft.issue=12&rft.spage=1445&rft.epage=1452&rft.pages=1445-1452&rft.issn=1093-4529&rft.eissn=1532-4117&rft_id=info:doi/10.1080/10934529.2014.928558&rft_dat=%3Cproquest_cross%3E1550078211%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-9fa77bac37b62bc995f425b2d4be79a8678a6b6cfb9cc998d90167f5a04435f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552144281&rft_id=info:pmid/25072777&rfr_iscdi=true