Loading…

The Dynamic Geometrisation of Computer Programming

The goal of this paper is to explore dynamic geometry environments (DGE) as a type of computer programming language. Using projects created by secondary students in one particular DGE, we analyse the extent to which the various aspects of computational thinking-including both ways of doing things an...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical thinking and learning 2018-01, Vol.20 (1), p.54-74
Main Authors: Sinclair, Nathalie, Patterson, Margaret
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-ce53d8230eeaa3b459d5fd1ca1bbd4101a2367c04b0806bd59e39d3a80c8854e3
cites cdi_FETCH-LOGICAL-c360t-ce53d8230eeaa3b459d5fd1ca1bbd4101a2367c04b0806bd59e39d3a80c8854e3
container_end_page 74
container_issue 1
container_start_page 54
container_title Mathematical thinking and learning
container_volume 20
creator Sinclair, Nathalie
Patterson, Margaret
description The goal of this paper is to explore dynamic geometry environments (DGE) as a type of computer programming language. Using projects created by secondary students in one particular DGE, we analyse the extent to which the various aspects of computational thinking-including both ways of doing things and particular concepts-were evident in their work, drawing specifically on frameworks for computational thinking that are designed for the purpose of mathematics education. We show how many of the practices associated with the use of propositional programming languages also feature in the more spatial and temporal register of the geometric 'language' of DGEs.
doi_str_mv 10.1080/10986065.2018.1403541
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10986065_2018_1403541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1168332</ericid><sourcerecordid>1991994661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-ce53d8230eeaa3b459d5fd1ca1bbd4101a2367c04b0806bd59e39d3a80c8854e3</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKcfYVDwufOuabL0TZlzKgN9mM8hTdOZsTYzaZF9ezM6fRQCF7jf_477ETJBmCIIuEMoBAfOphmgmGIOlOV4RkbIaJbOBKXn8R-Z9AhdkqsQthBJoLMRydafJnk8tKqxOlka15jO26A669rE1cncNfu-Mz55927jVdPYdnNNLmq1C-bmVMfk42mxnj-nq7fly_xhlWrKoUu1YbQSGQVjlKJlzoqK1RVqhWVZ5QioMspnGvIy3sDLihWGFhVVArQQLDd0TG6HuXvvvnoTOrl1vW_jSolFEV_OOUaKDZT2LgRvarn3tlH-IBHkUY_81SOPeuRJT8xNhpzxVv9lFq-IPBrLYv9-6Nu2dr5R387vKtmpw8752qtW2yDp_yt-AC4xdDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1991994661</pqid></control><display><type>article</type><title>The Dynamic Geometrisation of Computer Programming</title><source>ERIC</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Sinclair, Nathalie ; Patterson, Margaret</creator><creatorcontrib>Sinclair, Nathalie ; Patterson, Margaret</creatorcontrib><description>The goal of this paper is to explore dynamic geometry environments (DGE) as a type of computer programming language. Using projects created by secondary students in one particular DGE, we analyse the extent to which the various aspects of computational thinking-including both ways of doing things and particular concepts-were evident in their work, drawing specifically on frameworks for computational thinking that are designed for the purpose of mathematics education. We show how many of the practices associated with the use of propositional programming languages also feature in the more spatial and temporal register of the geometric 'language' of DGEs.</description><identifier>ISSN: 1098-6065</identifier><identifier>EISSN: 1532-7833</identifier><identifier>DOI: 10.1080/10986065.2018.1403541</identifier><language>eng</language><publisher>Philadelphia: Routledge</publisher><subject>Computation ; Computer programming ; Foreign Countries ; Geometry ; Mathematical Models ; Mathematics Instruction ; Programming ; Programming Languages ; Secondary School Mathematics ; Thinking Skills</subject><ispartof>Mathematical thinking and learning, 2018-01, Vol.20 (1), p.54-74</ispartof><rights>2018 Taylor &amp; Francis 2018</rights><rights>2018 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-ce53d8230eeaa3b459d5fd1ca1bbd4101a2367c04b0806bd59e39d3a80c8854e3</citedby><cites>FETCH-LOGICAL-c360t-ce53d8230eeaa3b459d5fd1ca1bbd4101a2367c04b0806bd59e39d3a80c8854e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1168332$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinclair, Nathalie</creatorcontrib><creatorcontrib>Patterson, Margaret</creatorcontrib><title>The Dynamic Geometrisation of Computer Programming</title><title>Mathematical thinking and learning</title><description>The goal of this paper is to explore dynamic geometry environments (DGE) as a type of computer programming language. Using projects created by secondary students in one particular DGE, we analyse the extent to which the various aspects of computational thinking-including both ways of doing things and particular concepts-were evident in their work, drawing specifically on frameworks for computational thinking that are designed for the purpose of mathematics education. We show how many of the practices associated with the use of propositional programming languages also feature in the more spatial and temporal register of the geometric 'language' of DGEs.</description><subject>Computation</subject><subject>Computer programming</subject><subject>Foreign Countries</subject><subject>Geometry</subject><subject>Mathematical Models</subject><subject>Mathematics Instruction</subject><subject>Programming</subject><subject>Programming Languages</subject><subject>Secondary School Mathematics</subject><subject>Thinking Skills</subject><issn>1098-6065</issn><issn>1532-7833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNp9kFFLwzAQx4MoOKcfYVDwufOuabL0TZlzKgN9mM8hTdOZsTYzaZF9ezM6fRQCF7jf_477ETJBmCIIuEMoBAfOphmgmGIOlOV4RkbIaJbOBKXn8R-Z9AhdkqsQthBJoLMRydafJnk8tKqxOlka15jO26A669rE1cncNfu-Mz55927jVdPYdnNNLmq1C-bmVMfk42mxnj-nq7fly_xhlWrKoUu1YbQSGQVjlKJlzoqK1RVqhWVZ5QioMspnGvIy3sDLihWGFhVVArQQLDd0TG6HuXvvvnoTOrl1vW_jSolFEV_OOUaKDZT2LgRvarn3tlH-IBHkUY_81SOPeuRJT8xNhpzxVv9lFq-IPBrLYv9-6Nu2dr5R387vKtmpw8752qtW2yDp_yt-AC4xdDY</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>Sinclair, Nathalie</creator><creator>Patterson, Margaret</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20180102</creationdate><title>The Dynamic Geometrisation of Computer Programming</title><author>Sinclair, Nathalie ; Patterson, Margaret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-ce53d8230eeaa3b459d5fd1ca1bbd4101a2367c04b0806bd59e39d3a80c8854e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computation</topic><topic>Computer programming</topic><topic>Foreign Countries</topic><topic>Geometry</topic><topic>Mathematical Models</topic><topic>Mathematics Instruction</topic><topic>Programming</topic><topic>Programming Languages</topic><topic>Secondary School Mathematics</topic><topic>Thinking Skills</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinclair, Nathalie</creatorcontrib><creatorcontrib>Patterson, Margaret</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematical thinking and learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinclair, Nathalie</au><au>Patterson, Margaret</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1168332</ericid><atitle>The Dynamic Geometrisation of Computer Programming</atitle><jtitle>Mathematical thinking and learning</jtitle><date>2018-01-02</date><risdate>2018</risdate><volume>20</volume><issue>1</issue><spage>54</spage><epage>74</epage><pages>54-74</pages><issn>1098-6065</issn><eissn>1532-7833</eissn><abstract>The goal of this paper is to explore dynamic geometry environments (DGE) as a type of computer programming language. Using projects created by secondary students in one particular DGE, we analyse the extent to which the various aspects of computational thinking-including both ways of doing things and particular concepts-were evident in their work, drawing specifically on frameworks for computational thinking that are designed for the purpose of mathematics education. We show how many of the practices associated with the use of propositional programming languages also feature in the more spatial and temporal register of the geometric 'language' of DGEs.</abstract><cop>Philadelphia</cop><pub>Routledge</pub><doi>10.1080/10986065.2018.1403541</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1098-6065
ispartof Mathematical thinking and learning, 2018-01, Vol.20 (1), p.54-74
issn 1098-6065
1532-7833
language eng
recordid cdi_crossref_primary_10_1080_10986065_2018_1403541
source ERIC; Taylor and Francis Social Sciences and Humanities Collection
subjects Computation
Computer programming
Foreign Countries
Geometry
Mathematical Models
Mathematics Instruction
Programming
Programming Languages
Secondary School Mathematics
Thinking Skills
title The Dynamic Geometrisation of Computer Programming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dynamic%20Geometrisation%20of%20Computer%20Programming&rft.jtitle=Mathematical%20thinking%20and%20learning&rft.au=Sinclair,%20Nathalie&rft.date=2018-01-02&rft.volume=20&rft.issue=1&rft.spage=54&rft.epage=74&rft.pages=54-74&rft.issn=1098-6065&rft.eissn=1532-7833&rft_id=info:doi/10.1080/10986065.2018.1403541&rft_dat=%3Cproquest_cross%3E1991994661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-ce53d8230eeaa3b459d5fd1ca1bbd4101a2367c04b0806bd59e39d3a80c8854e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1991994661&rft_id=info:pmid/&rft_ericid=EJ1168332&rfr_iscdi=true