Loading…

Radial Basis Neural Network for Lossless Data Compression

The radial basis network is essentially a function approximator; article shows that this characteristic can be exploited for data compression applications. A variant of the radial basis network, the generalized regression neural network, is used in a two-stage compression scheme and its performance...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computers & applications 2002-01, Vol.24 (1), p.14-19
Main Authors: Logeswaran, R., Eswaran, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943
cites cdi_FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943
container_end_page 19
container_issue 1
container_start_page 14
container_title International journal of computers & applications
container_volume 24
creator Logeswaran, R.
Eswaran, C.
description The radial basis network is essentially a function approximator; article shows that this characteristic can be exploited for data compression applications. A variant of the radial basis network, the generalized regression neural network, is used in a two-stage compression scheme and its performance is evaluated in terms of the compression ratio. The training is imparted to the network using a block adaptive training method, and the trained network performs as a predictor-approximator in the first stage of compression. The optimum configuration of the network is arrived at by using a trial-and-error procedure. The compression ratios achieved by this network when used along with an arithmetic encoder in a two-stage compression scheme are obtained for different test files containing telemetry data. It is found that these results are comparable to those obtained with other known classical linear predictors.
doi_str_mv 10.1080/1206212X.2002.11441655
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_1206212X_2002_11441655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>13500809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_Qfbicevke3Os9RNKBVHwFmazCaxuuyVZkf57s9Ti0dPMwPvMzPsScklhRqGCa8pAMcreZwyAzSgVgiopj8iEGiZLDVoc5z6LylF1Ss5S-gAQmqlqQswLNi12xQ2mNhUr_xXzsPLDdx8_i9DHYtmn1PmUilscsFj0623MU9tvzslJwC75i986JW_3d6-Lx3L5_PC0mC9Lx6QaShM0r3QttRHIPVPSGeBecuRNQOUohKY24DRwxanmjDW6Bl5xWhkhvRF8StR-r4v5leiD3cZ2jXFnKdgxAHsIwI4B2EMAGbzag1tMDrsQcePa9EdzCZk2WTff69pNNrzGbL1r7IC7ro8HiP9z6wd6dG2e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radial Basis Neural Network for Lossless Data Compression</title><source>Taylor and Francis Science and Technology Collection</source><creator>Logeswaran, R. ; Eswaran, C.</creator><creatorcontrib>Logeswaran, R. ; Eswaran, C.</creatorcontrib><description>The radial basis network is essentially a function approximator; article shows that this characteristic can be exploited for data compression applications. A variant of the radial basis network, the generalized regression neural network, is used in a two-stage compression scheme and its performance is evaluated in terms of the compression ratio. The training is imparted to the network using a block adaptive training method, and the trained network performs as a predictor-approximator in the first stage of compression. The optimum configuration of the network is arrived at by using a trial-and-error procedure. The compression ratios achieved by this network when used along with an arithmetic encoder in a two-stage compression scheme are obtained for different test files containing telemetry data. It is found that these results are comparable to those obtained with other known classical linear predictors.</description><identifier>ISSN: 1206-212X</identifier><identifier>EISSN: 1925-7074</identifier><identifier>DOI: 10.1080/1206212X.2002.11441655</identifier><language>eng</language><publisher>Anaheim, CA: Taylor &amp; Francis</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; data compression ; Exact sciences and technology ; Information, signal and communications theory ; lossless compression ; Miscellaneous ; Neural networks ; predictor ; radial basis network ; Signal processing ; Telecommunications and information theory ; two-stage compression</subject><ispartof>International journal of computers &amp; applications, 2002-01, Vol.24 (1), p.14-19</ispartof><rights>ACTA Press 2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943</citedby><cites>FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27921,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13500809$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Logeswaran, R.</creatorcontrib><creatorcontrib>Eswaran, C.</creatorcontrib><title>Radial Basis Neural Network for Lossless Data Compression</title><title>International journal of computers &amp; applications</title><description>The radial basis network is essentially a function approximator; article shows that this characteristic can be exploited for data compression applications. A variant of the radial basis network, the generalized regression neural network, is used in a two-stage compression scheme and its performance is evaluated in terms of the compression ratio. The training is imparted to the network using a block adaptive training method, and the trained network performs as a predictor-approximator in the first stage of compression. The optimum configuration of the network is arrived at by using a trial-and-error procedure. The compression ratios achieved by this network when used along with an arithmetic encoder in a two-stage compression scheme are obtained for different test files containing telemetry data. It is found that these results are comparable to those obtained with other known classical linear predictors.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>data compression</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>lossless compression</subject><subject>Miscellaneous</subject><subject>Neural networks</subject><subject>predictor</subject><subject>radial basis network</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>two-stage compression</subject><issn>1206-212X</issn><issn>1925-7074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_Qfbicevke3Os9RNKBVHwFmazCaxuuyVZkf57s9Ti0dPMwPvMzPsScklhRqGCa8pAMcreZwyAzSgVgiopj8iEGiZLDVoc5z6LylF1Ss5S-gAQmqlqQswLNi12xQ2mNhUr_xXzsPLDdx8_i9DHYtmn1PmUilscsFj0623MU9tvzslJwC75i986JW_3d6-Lx3L5_PC0mC9Lx6QaShM0r3QttRHIPVPSGeBecuRNQOUohKY24DRwxanmjDW6Bl5xWhkhvRF8StR-r4v5leiD3cZ2jXFnKdgxAHsIwI4B2EMAGbzag1tMDrsQcePa9EdzCZk2WTff69pNNrzGbL1r7IC7ro8HiP9z6wd6dG2e</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Logeswaran, R.</creator><creator>Eswaran, C.</creator><general>Taylor &amp; Francis</general><general>Acta Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020101</creationdate><title>Radial Basis Neural Network for Lossless Data Compression</title><author>Logeswaran, R. ; Eswaran, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>data compression</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>lossless compression</topic><topic>Miscellaneous</topic><topic>Neural networks</topic><topic>predictor</topic><topic>radial basis network</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>two-stage compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logeswaran, R.</creatorcontrib><creatorcontrib>Eswaran, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal of computers &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logeswaran, R.</au><au>Eswaran, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial Basis Neural Network for Lossless Data Compression</atitle><jtitle>International journal of computers &amp; applications</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>24</volume><issue>1</issue><spage>14</spage><epage>19</epage><pages>14-19</pages><issn>1206-212X</issn><eissn>1925-7074</eissn><abstract>The radial basis network is essentially a function approximator; article shows that this characteristic can be exploited for data compression applications. A variant of the radial basis network, the generalized regression neural network, is used in a two-stage compression scheme and its performance is evaluated in terms of the compression ratio. The training is imparted to the network using a block adaptive training method, and the trained network performs as a predictor-approximator in the first stage of compression. The optimum configuration of the network is arrived at by using a trial-and-error procedure. The compression ratios achieved by this network when used along with an arithmetic encoder in a two-stage compression scheme are obtained for different test files containing telemetry data. It is found that these results are comparable to those obtained with other known classical linear predictors.</abstract><cop>Anaheim, CA</cop><cop>Calgary, AB</cop><cop>Zürich</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/1206212X.2002.11441655</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1206-212X
ispartof International journal of computers & applications, 2002-01, Vol.24 (1), p.14-19
issn 1206-212X
1925-7074
language eng
recordid cdi_crossref_primary_10_1080_1206212X_2002_11441655
source Taylor and Francis Science and Technology Collection
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
data compression
Exact sciences and technology
Information, signal and communications theory
lossless compression
Miscellaneous
Neural networks
predictor
radial basis network
Signal processing
Telecommunications and information theory
two-stage compression
title Radial Basis Neural Network for Lossless Data Compression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20Basis%20Neural%20Network%20for%20Lossless%20Data%20Compression&rft.jtitle=International%20journal%20of%20computers%20&%20applications&rft.au=Logeswaran,%20R.&rft.date=2002-01-01&rft.volume=24&rft.issue=1&rft.spage=14&rft.epage=19&rft.pages=14-19&rft.issn=1206-212X&rft.eissn=1925-7074&rft_id=info:doi/10.1080/1206212X.2002.11441655&rft_dat=%3Cpascalfrancis_cross%3E13500809%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true