Loading…
Radial Basis Neural Network for Lossless Data Compression
The radial basis network is essentially a function approximator; article shows that this characteristic can be exploited for data compression applications. A variant of the radial basis network, the generalized regression neural network, is used in a two-stage compression scheme and its performance...
Saved in:
Published in: | International journal of computers & applications 2002-01, Vol.24 (1), p.14-19 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943 |
---|---|
cites | cdi_FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943 |
container_end_page | 19 |
container_issue | 1 |
container_start_page | 14 |
container_title | International journal of computers & applications |
container_volume | 24 |
creator | Logeswaran, R. Eswaran, C. |
description | The radial basis network is essentially a function approximator; article shows that this characteristic can be exploited for data compression applications. A variant of the radial basis network, the generalized regression neural network, is used in a two-stage compression scheme and its performance is evaluated in terms of the compression ratio. The training is imparted to the network using a block adaptive training method, and the trained network performs as a predictor-approximator in the first stage of compression. The optimum configuration of the network is arrived at by using a trial-and-error procedure. The compression ratios achieved by this network when used along with an arithmetic encoder in a two-stage compression scheme are obtained for different test files containing telemetry data. It is found that these results are comparable to those obtained with other known classical linear predictors. |
doi_str_mv | 10.1080/1206212X.2002.11441655 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_1206212X_2002_11441655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>13500809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_Qfbicevke3Os9RNKBVHwFmazCaxuuyVZkf57s9Ti0dPMwPvMzPsScklhRqGCa8pAMcreZwyAzSgVgiopj8iEGiZLDVoc5z6LylF1Ss5S-gAQmqlqQswLNi12xQ2mNhUr_xXzsPLDdx8_i9DHYtmn1PmUilscsFj0623MU9tvzslJwC75i986JW_3d6-Lx3L5_PC0mC9Lx6QaShM0r3QttRHIPVPSGeBecuRNQOUohKY24DRwxanmjDW6Bl5xWhkhvRF8StR-r4v5leiD3cZ2jXFnKdgxAHsIwI4B2EMAGbzag1tMDrsQcePa9EdzCZk2WTff69pNNrzGbL1r7IC7ro8HiP9z6wd6dG2e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radial Basis Neural Network for Lossless Data Compression</title><source>Taylor and Francis Science and Technology Collection</source><creator>Logeswaran, R. ; Eswaran, C.</creator><creatorcontrib>Logeswaran, R. ; Eswaran, C.</creatorcontrib><description>The radial basis network is essentially a function approximator; article shows that this characteristic can be exploited for data compression applications. A variant of the radial basis network, the generalized regression neural network, is used in a two-stage compression scheme and its performance is evaluated in terms of the compression ratio. The training is imparted to the network using a block adaptive training method, and the trained network performs as a predictor-approximator in the first stage of compression. The optimum configuration of the network is arrived at by using a trial-and-error procedure. The compression ratios achieved by this network when used along with an arithmetic encoder in a two-stage compression scheme are obtained for different test files containing telemetry data. It is found that these results are comparable to those obtained with other known classical linear predictors.</description><identifier>ISSN: 1206-212X</identifier><identifier>EISSN: 1925-7074</identifier><identifier>DOI: 10.1080/1206212X.2002.11441655</identifier><language>eng</language><publisher>Anaheim, CA: Taylor & Francis</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; data compression ; Exact sciences and technology ; Information, signal and communications theory ; lossless compression ; Miscellaneous ; Neural networks ; predictor ; radial basis network ; Signal processing ; Telecommunications and information theory ; two-stage compression</subject><ispartof>International journal of computers & applications, 2002-01, Vol.24 (1), p.14-19</ispartof><rights>ACTA Press 2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943</citedby><cites>FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27921,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13500809$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Logeswaran, R.</creatorcontrib><creatorcontrib>Eswaran, C.</creatorcontrib><title>Radial Basis Neural Network for Lossless Data Compression</title><title>International journal of computers & applications</title><description>The radial basis network is essentially a function approximator; article shows that this characteristic can be exploited for data compression applications. A variant of the radial basis network, the generalized regression neural network, is used in a two-stage compression scheme and its performance is evaluated in terms of the compression ratio. The training is imparted to the network using a block adaptive training method, and the trained network performs as a predictor-approximator in the first stage of compression. The optimum configuration of the network is arrived at by using a trial-and-error procedure. The compression ratios achieved by this network when used along with an arithmetic encoder in a two-stage compression scheme are obtained for different test files containing telemetry data. It is found that these results are comparable to those obtained with other known classical linear predictors.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>data compression</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>lossless compression</subject><subject>Miscellaneous</subject><subject>Neural networks</subject><subject>predictor</subject><subject>radial basis network</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>two-stage compression</subject><issn>1206-212X</issn><issn>1925-7074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_Qfbicevke3Os9RNKBVHwFmazCaxuuyVZkf57s9Ti0dPMwPvMzPsScklhRqGCa8pAMcreZwyAzSgVgiopj8iEGiZLDVoc5z6LylF1Ss5S-gAQmqlqQswLNi12xQ2mNhUr_xXzsPLDdx8_i9DHYtmn1PmUilscsFj0623MU9tvzslJwC75i986JW_3d6-Lx3L5_PC0mC9Lx6QaShM0r3QttRHIPVPSGeBecuRNQOUohKY24DRwxanmjDW6Bl5xWhkhvRF8StR-r4v5leiD3cZ2jXFnKdgxAHsIwI4B2EMAGbzag1tMDrsQcePa9EdzCZk2WTff69pNNrzGbL1r7IC7ro8HiP9z6wd6dG2e</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Logeswaran, R.</creator><creator>Eswaran, C.</creator><general>Taylor & Francis</general><general>Acta Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020101</creationdate><title>Radial Basis Neural Network for Lossless Data Compression</title><author>Logeswaran, R. ; Eswaran, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>data compression</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>lossless compression</topic><topic>Miscellaneous</topic><topic>Neural networks</topic><topic>predictor</topic><topic>radial basis network</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>two-stage compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logeswaran, R.</creatorcontrib><creatorcontrib>Eswaran, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal of computers & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logeswaran, R.</au><au>Eswaran, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial Basis Neural Network for Lossless Data Compression</atitle><jtitle>International journal of computers & applications</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>24</volume><issue>1</issue><spage>14</spage><epage>19</epage><pages>14-19</pages><issn>1206-212X</issn><eissn>1925-7074</eissn><abstract>The radial basis network is essentially a function approximator; article shows that this characteristic can be exploited for data compression applications. A variant of the radial basis network, the generalized regression neural network, is used in a two-stage compression scheme and its performance is evaluated in terms of the compression ratio. The training is imparted to the network using a block adaptive training method, and the trained network performs as a predictor-approximator in the first stage of compression. The optimum configuration of the network is arrived at by using a trial-and-error procedure. The compression ratios achieved by this network when used along with an arithmetic encoder in a two-stage compression scheme are obtained for different test files containing telemetry data. It is found that these results are comparable to those obtained with other known classical linear predictors.</abstract><cop>Anaheim, CA</cop><cop>Calgary, AB</cop><cop>Zürich</cop><pub>Taylor & Francis</pub><doi>10.1080/1206212X.2002.11441655</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1206-212X |
ispartof | International journal of computers & applications, 2002-01, Vol.24 (1), p.14-19 |
issn | 1206-212X 1925-7074 |
language | eng |
recordid | cdi_crossref_primary_10_1080_1206212X_2002_11441655 |
source | Taylor and Francis Science and Technology Collection |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks data compression Exact sciences and technology Information, signal and communications theory lossless compression Miscellaneous Neural networks predictor radial basis network Signal processing Telecommunications and information theory two-stage compression |
title | Radial Basis Neural Network for Lossless Data Compression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20Basis%20Neural%20Network%20for%20Lossless%20Data%20Compression&rft.jtitle=International%20journal%20of%20computers%20&%20applications&rft.au=Logeswaran,%20R.&rft.date=2002-01-01&rft.volume=24&rft.issue=1&rft.spage=14&rft.epage=19&rft.pages=14-19&rft.issn=1206-212X&rft.eissn=1925-7074&rft_id=info:doi/10.1080/1206212X.2002.11441655&rft_dat=%3Cpascalfrancis_cross%3E13500809%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-9f7387b5794a3e265c903e53a3dfa6c10fdb90c7036317322d7b038318945e943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |