Loading…

What determines bitcoin liquidity? A penalized regression approach

We investigate which factors contribute most to the liquidity of Bitcoin, using a diverse universe of candidate factors reflecting key developments in the crypto market and the global economy. The empirical analysis relies on three regularized linear regression methods, viz. LASSO, adaptive LASSO, a...

Full description

Saved in:
Bibliographic Details
Published in:Applied economics letters 2023-10, Vol.30 (18), p.2543-2554
Main Author: Ahmed, Walid M.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883
cites cdi_FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883
container_end_page 2554
container_issue 18
container_start_page 2543
container_title Applied economics letters
container_volume 30
creator Ahmed, Walid M.A.
description We investigate which factors contribute most to the liquidity of Bitcoin, using a diverse universe of candidate factors reflecting key developments in the crypto market and the global economy. The empirical analysis relies on three regularized linear regression methods, viz. LASSO, adaptive LASSO, and elastic net. We also apply a cross-fit partialing-out LASSO instrumental-variables regression model, as a supplementary approach to handle endogeneity. Findings reveal that trading volume and realized volatility of Bitcoin, cryptocurrency hacks, Ethereum liquidity, and public attention are the most common drivers of liquidity, irrespective of the penalized regression approach and liquidity proxy adopted. Our evidence confirms the paramountcy of cryptocurrency-specific factors over global economic and financial ones in influencing Bitcoin liquidity.
doi_str_mv 10.1080/13504851.2022.2099793
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13504851_2022_2099793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859758712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwvHWSbDbJSWvxCwpeFI8hTbI2ZbvZJilSf71bWq9eZubwvDPDg9A1hgkGAbeYMqgEwxMChAxFSi7pCRrhqq7Likh8OswDU-6hc3SR0goAaiHrEXr4XOpcWJddXPvOpWLhswm-K1q_2Xrr8-6umBa963Trf5wtovuKLiUfukL3fQzaLC_RWaPb5K6OfYw-nh7fZy_l_O35dTadl6YiIpeVpsAwGMkpZcRILLjDRlDQFjCTxnFLgSwYtQxqKjhdEMyAOSpEA0QIOkY3h73D2c3WpaxWYRuHx5IigknOBMdkoNiBMjGkFF2j-ujXOu4UBrXXpf50qb0uddQ15O4POd81Ia71d4itVVnv2hCbqDvjk6L_r_gFjKJvUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859758712</pqid></control><display><type>article</type><title>What determines bitcoin liquidity? A penalized regression approach</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>Taylor &amp; Francis</source><creator>Ahmed, Walid M.A.</creator><creatorcontrib>Ahmed, Walid M.A.</creatorcontrib><description>We investigate which factors contribute most to the liquidity of Bitcoin, using a diverse universe of candidate factors reflecting key developments in the crypto market and the global economy. The empirical analysis relies on three regularized linear regression methods, viz. LASSO, adaptive LASSO, and elastic net. We also apply a cross-fit partialing-out LASSO instrumental-variables regression model, as a supplementary approach to handle endogeneity. Findings reveal that trading volume and realized volatility of Bitcoin, cryptocurrency hacks, Ethereum liquidity, and public attention are the most common drivers of liquidity, irrespective of the penalized regression approach and liquidity proxy adopted. Our evidence confirms the paramountcy of cryptocurrency-specific factors over global economic and financial ones in influencing Bitcoin liquidity.</description><identifier>ISSN: 1350-4851</identifier><identifier>EISSN: 1466-4291</identifier><identifier>DOI: 10.1080/13504851.2022.2099793</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>adaptive LASSO ; Bitcoin ; Candidates ; Digital currencies ; Economic analysis ; elastic net ; Global economy ; LASSO ; Liquidity ; liquidity determinants ; Volatility</subject><ispartof>Applied economics letters, 2023-10, Vol.30 (18), p.2543-2554</ispartof><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883</citedby><cites>FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883</cites><orcidid>0000-0002-5797-3191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Ahmed, Walid M.A.</creatorcontrib><title>What determines bitcoin liquidity? A penalized regression approach</title><title>Applied economics letters</title><description>We investigate which factors contribute most to the liquidity of Bitcoin, using a diverse universe of candidate factors reflecting key developments in the crypto market and the global economy. The empirical analysis relies on three regularized linear regression methods, viz. LASSO, adaptive LASSO, and elastic net. We also apply a cross-fit partialing-out LASSO instrumental-variables regression model, as a supplementary approach to handle endogeneity. Findings reveal that trading volume and realized volatility of Bitcoin, cryptocurrency hacks, Ethereum liquidity, and public attention are the most common drivers of liquidity, irrespective of the penalized regression approach and liquidity proxy adopted. Our evidence confirms the paramountcy of cryptocurrency-specific factors over global economic and financial ones in influencing Bitcoin liquidity.</description><subject>adaptive LASSO</subject><subject>Bitcoin</subject><subject>Candidates</subject><subject>Digital currencies</subject><subject>Economic analysis</subject><subject>elastic net</subject><subject>Global economy</subject><subject>LASSO</subject><subject>Liquidity</subject><subject>liquidity determinants</subject><subject>Volatility</subject><issn>1350-4851</issn><issn>1466-4291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_QVjwvHWSbDbJSWvxCwpeFI8hTbI2ZbvZJilSf71bWq9eZubwvDPDg9A1hgkGAbeYMqgEwxMChAxFSi7pCRrhqq7Likh8OswDU-6hc3SR0goAaiHrEXr4XOpcWJddXPvOpWLhswm-K1q_2Xrr8-6umBa963Trf5wtovuKLiUfukL3fQzaLC_RWaPb5K6OfYw-nh7fZy_l_O35dTadl6YiIpeVpsAwGMkpZcRILLjDRlDQFjCTxnFLgSwYtQxqKjhdEMyAOSpEA0QIOkY3h73D2c3WpaxWYRuHx5IigknOBMdkoNiBMjGkFF2j-ujXOu4UBrXXpf50qb0uddQ15O4POd81Ia71d4itVVnv2hCbqDvjk6L_r_gFjKJvUQ</recordid><startdate>20231024</startdate><enddate>20231024</enddate><creator>Ahmed, Walid M.A.</creator><general>Routledge</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-5797-3191</orcidid></search><sort><creationdate>20231024</creationdate><title>What determines bitcoin liquidity? A penalized regression approach</title><author>Ahmed, Walid M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adaptive LASSO</topic><topic>Bitcoin</topic><topic>Candidates</topic><topic>Digital currencies</topic><topic>Economic analysis</topic><topic>elastic net</topic><topic>Global economy</topic><topic>LASSO</topic><topic>Liquidity</topic><topic>liquidity determinants</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Walid M.A.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Walid M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What determines bitcoin liquidity? A penalized regression approach</atitle><jtitle>Applied economics letters</jtitle><date>2023-10-24</date><risdate>2023</risdate><volume>30</volume><issue>18</issue><spage>2543</spage><epage>2554</epage><pages>2543-2554</pages><issn>1350-4851</issn><eissn>1466-4291</eissn><abstract>We investigate which factors contribute most to the liquidity of Bitcoin, using a diverse universe of candidate factors reflecting key developments in the crypto market and the global economy. The empirical analysis relies on three regularized linear regression methods, viz. LASSO, adaptive LASSO, and elastic net. We also apply a cross-fit partialing-out LASSO instrumental-variables regression model, as a supplementary approach to handle endogeneity. Findings reveal that trading volume and realized volatility of Bitcoin, cryptocurrency hacks, Ethereum liquidity, and public attention are the most common drivers of liquidity, irrespective of the penalized regression approach and liquidity proxy adopted. Our evidence confirms the paramountcy of cryptocurrency-specific factors over global economic and financial ones in influencing Bitcoin liquidity.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/13504851.2022.2099793</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5797-3191</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1350-4851
ispartof Applied economics letters, 2023-10, Vol.30 (18), p.2543-2554
issn 1350-4851
1466-4291
language eng
recordid cdi_crossref_primary_10_1080_13504851_2022_2099793
source International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; Taylor & Francis
subjects adaptive LASSO
Bitcoin
Candidates
Digital currencies
Economic analysis
elastic net
Global economy
LASSO
Liquidity
liquidity determinants
Volatility
title What determines bitcoin liquidity? A penalized regression approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20determines%20bitcoin%20liquidity?%20A%20penalized%20regression%20approach&rft.jtitle=Applied%20economics%20letters&rft.au=Ahmed,%20Walid%20M.A.&rft.date=2023-10-24&rft.volume=30&rft.issue=18&rft.spage=2543&rft.epage=2554&rft.pages=2543-2554&rft.issn=1350-4851&rft.eissn=1466-4291&rft_id=info:doi/10.1080/13504851.2022.2099793&rft_dat=%3Cproquest_cross%3E2859758712%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2859758712&rft_id=info:pmid/&rfr_iscdi=true