Loading…
What determines bitcoin liquidity? A penalized regression approach
We investigate which factors contribute most to the liquidity of Bitcoin, using a diverse universe of candidate factors reflecting key developments in the crypto market and the global economy. The empirical analysis relies on three regularized linear regression methods, viz. LASSO, adaptive LASSO, a...
Saved in:
Published in: | Applied economics letters 2023-10, Vol.30 (18), p.2543-2554 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883 |
container_end_page | 2554 |
container_issue | 18 |
container_start_page | 2543 |
container_title | Applied economics letters |
container_volume | 30 |
creator | Ahmed, Walid M.A. |
description | We investigate which factors contribute most to the liquidity of Bitcoin, using a diverse universe of candidate factors reflecting key developments in the crypto market and the global economy. The empirical analysis relies on three regularized linear regression methods, viz. LASSO, adaptive LASSO, and elastic net. We also apply a cross-fit partialing-out LASSO instrumental-variables regression model, as a supplementary approach to handle endogeneity. Findings reveal that trading volume and realized volatility of Bitcoin, cryptocurrency hacks, Ethereum liquidity, and public attention are the most common drivers of liquidity, irrespective of the penalized regression approach and liquidity proxy adopted. Our evidence confirms the paramountcy of cryptocurrency-specific factors over global economic and financial ones in influencing Bitcoin liquidity. |
doi_str_mv | 10.1080/13504851.2022.2099793 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13504851_2022_2099793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859758712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwvHWSbDbJSWvxCwpeFI8hTbI2ZbvZJilSf71bWq9eZubwvDPDg9A1hgkGAbeYMqgEwxMChAxFSi7pCRrhqq7Likh8OswDU-6hc3SR0goAaiHrEXr4XOpcWJddXPvOpWLhswm-K1q_2Xrr8-6umBa963Trf5wtovuKLiUfukL3fQzaLC_RWaPb5K6OfYw-nh7fZy_l_O35dTadl6YiIpeVpsAwGMkpZcRILLjDRlDQFjCTxnFLgSwYtQxqKjhdEMyAOSpEA0QIOkY3h73D2c3WpaxWYRuHx5IigknOBMdkoNiBMjGkFF2j-ujXOu4UBrXXpf50qb0uddQ15O4POd81Ia71d4itVVnv2hCbqDvjk6L_r_gFjKJvUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859758712</pqid></control><display><type>article</type><title>What determines bitcoin liquidity? A penalized regression approach</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>Taylor & Francis</source><creator>Ahmed, Walid M.A.</creator><creatorcontrib>Ahmed, Walid M.A.</creatorcontrib><description>We investigate which factors contribute most to the liquidity of Bitcoin, using a diverse universe of candidate factors reflecting key developments in the crypto market and the global economy. The empirical analysis relies on three regularized linear regression methods, viz. LASSO, adaptive LASSO, and elastic net. We also apply a cross-fit partialing-out LASSO instrumental-variables regression model, as a supplementary approach to handle endogeneity. Findings reveal that trading volume and realized volatility of Bitcoin, cryptocurrency hacks, Ethereum liquidity, and public attention are the most common drivers of liquidity, irrespective of the penalized regression approach and liquidity proxy adopted. Our evidence confirms the paramountcy of cryptocurrency-specific factors over global economic and financial ones in influencing Bitcoin liquidity.</description><identifier>ISSN: 1350-4851</identifier><identifier>EISSN: 1466-4291</identifier><identifier>DOI: 10.1080/13504851.2022.2099793</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>adaptive LASSO ; Bitcoin ; Candidates ; Digital currencies ; Economic analysis ; elastic net ; Global economy ; LASSO ; Liquidity ; liquidity determinants ; Volatility</subject><ispartof>Applied economics letters, 2023-10, Vol.30 (18), p.2543-2554</ispartof><rights>2022 Informa UK Limited, trading as Taylor & Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883</citedby><cites>FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883</cites><orcidid>0000-0002-5797-3191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Ahmed, Walid M.A.</creatorcontrib><title>What determines bitcoin liquidity? A penalized regression approach</title><title>Applied economics letters</title><description>We investigate which factors contribute most to the liquidity of Bitcoin, using a diverse universe of candidate factors reflecting key developments in the crypto market and the global economy. The empirical analysis relies on three regularized linear regression methods, viz. LASSO, adaptive LASSO, and elastic net. We also apply a cross-fit partialing-out LASSO instrumental-variables regression model, as a supplementary approach to handle endogeneity. Findings reveal that trading volume and realized volatility of Bitcoin, cryptocurrency hacks, Ethereum liquidity, and public attention are the most common drivers of liquidity, irrespective of the penalized regression approach and liquidity proxy adopted. Our evidence confirms the paramountcy of cryptocurrency-specific factors over global economic and financial ones in influencing Bitcoin liquidity.</description><subject>adaptive LASSO</subject><subject>Bitcoin</subject><subject>Candidates</subject><subject>Digital currencies</subject><subject>Economic analysis</subject><subject>elastic net</subject><subject>Global economy</subject><subject>LASSO</subject><subject>Liquidity</subject><subject>liquidity determinants</subject><subject>Volatility</subject><issn>1350-4851</issn><issn>1466-4291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_QVjwvHWSbDbJSWvxCwpeFI8hTbI2ZbvZJilSf71bWq9eZubwvDPDg9A1hgkGAbeYMqgEwxMChAxFSi7pCRrhqq7Likh8OswDU-6hc3SR0goAaiHrEXr4XOpcWJddXPvOpWLhswm-K1q_2Xrr8-6umBa963Trf5wtovuKLiUfukL3fQzaLC_RWaPb5K6OfYw-nh7fZy_l_O35dTadl6YiIpeVpsAwGMkpZcRILLjDRlDQFjCTxnFLgSwYtQxqKjhdEMyAOSpEA0QIOkY3h73D2c3WpaxWYRuHx5IigknOBMdkoNiBMjGkFF2j-ujXOu4UBrXXpf50qb0uddQ15O4POd81Ia71d4itVVnv2hCbqDvjk6L_r_gFjKJvUQ</recordid><startdate>20231024</startdate><enddate>20231024</enddate><creator>Ahmed, Walid M.A.</creator><general>Routledge</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-5797-3191</orcidid></search><sort><creationdate>20231024</creationdate><title>What determines bitcoin liquidity? A penalized regression approach</title><author>Ahmed, Walid M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adaptive LASSO</topic><topic>Bitcoin</topic><topic>Candidates</topic><topic>Digital currencies</topic><topic>Economic analysis</topic><topic>elastic net</topic><topic>Global economy</topic><topic>LASSO</topic><topic>Liquidity</topic><topic>liquidity determinants</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Walid M.A.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Walid M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What determines bitcoin liquidity? A penalized regression approach</atitle><jtitle>Applied economics letters</jtitle><date>2023-10-24</date><risdate>2023</risdate><volume>30</volume><issue>18</issue><spage>2543</spage><epage>2554</epage><pages>2543-2554</pages><issn>1350-4851</issn><eissn>1466-4291</eissn><abstract>We investigate which factors contribute most to the liquidity of Bitcoin, using a diverse universe of candidate factors reflecting key developments in the crypto market and the global economy. The empirical analysis relies on three regularized linear regression methods, viz. LASSO, adaptive LASSO, and elastic net. We also apply a cross-fit partialing-out LASSO instrumental-variables regression model, as a supplementary approach to handle endogeneity. Findings reveal that trading volume and realized volatility of Bitcoin, cryptocurrency hacks, Ethereum liquidity, and public attention are the most common drivers of liquidity, irrespective of the penalized regression approach and liquidity proxy adopted. Our evidence confirms the paramountcy of cryptocurrency-specific factors over global economic and financial ones in influencing Bitcoin liquidity.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/13504851.2022.2099793</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5797-3191</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-4851 |
ispartof | Applied economics letters, 2023-10, Vol.30 (18), p.2543-2554 |
issn | 1350-4851 1466-4291 |
language | eng |
recordid | cdi_crossref_primary_10_1080_13504851_2022_2099793 |
source | International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; Taylor & Francis |
subjects | adaptive LASSO Bitcoin Candidates Digital currencies Economic analysis elastic net Global economy LASSO Liquidity liquidity determinants Volatility |
title | What determines bitcoin liquidity? A penalized regression approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20determines%20bitcoin%20liquidity?%20A%20penalized%20regression%20approach&rft.jtitle=Applied%20economics%20letters&rft.au=Ahmed,%20Walid%20M.A.&rft.date=2023-10-24&rft.volume=30&rft.issue=18&rft.spage=2543&rft.epage=2554&rft.pages=2543-2554&rft.issn=1350-4851&rft.eissn=1466-4291&rft_id=info:doi/10.1080/13504851.2022.2099793&rft_dat=%3Cproquest_cross%3E2859758712%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-4a30510c973352c9187e1c830ad0159ce7d302b53d5063873b21505e388f02883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2859758712&rft_id=info:pmid/&rfr_iscdi=true |