Loading…

Parametric studies on hydrocarbon fireball using large eddy simulations

Occurrences of fireball close to plant buildings due to the release of flammable hydrocarbon fuel caused by the formation of fuel vapour cloud poses severe safety concerns. On the availability of potential ignition source, the induced fireball would cause the damage to the structures of nuclear powe...

Full description

Saved in:
Bibliographic Details
Published in:Combustion theory and modelling 2019-05, Vol.23 (3), p.387-413
Main Authors: Shelke, Ashish V., Gera, Bhuvaneshwar, Maheshwari, Naresh K., Singh, Ram K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Occurrences of fireball close to plant buildings due to the release of flammable hydrocarbon fuel caused by the formation of fuel vapour cloud poses severe safety concerns. On the availability of potential ignition source, the induced fireball would cause the damage to the structures of nuclear power plant by direct contact, radiation and/or convection of hot combustion products through the opening of air intakes and ducts. In the present paper, the accidental/ experimental observations and theoretical studies of fireball are summarised. Computational fluid dynamics (CFD) analyses have been carried out to study the behaviour of fireball using OpenFOAM CFD software. The parametric studies are conducted by varying the mass of fuel, inlet velocity and inlet diameter. The new correlations for fireball diameter and duration have been proposed based on the parametric studies using CFD simulations. The fireball with a larger amount of fuel releases the heat slower and for a longer duration. The high heat released rate (HRR) is observed in case of a larger inlet diameter used for the same mass. The incident radiation from the fireball is calculated at different locations to assess thermal hazard. Analysis performed show that various parameters like fireball diameter, duration and the radiative flux falling at different locations can be predicted well using CFD code.
ISSN:1364-7830
1741-3559
DOI:10.1080/13647830.2018.1536806