Loading…
Integrating algebraic multigrid method in spatial aggregation of massive trajectory data
The advanced technologies in location-based services and telecom have yield large volumes of trajectory data. Understanding these data effectively requires intuitive yet accurate visual analysis. The visual analysis of massive trajectory data is challenged by the numerous interactions among differen...
Saved in:
Published in: | International journal of geographical information science : IJGIS 2018-12, Vol.32 (12), p.2477-2496 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3 |
container_end_page | 2496 |
container_issue | 12 |
container_start_page | 2477 |
container_title | International journal of geographical information science : IJGIS |
container_volume | 32 |
creator | Wang, Siying Du, Yunyan Jia, Chen Bian, Meng Fei, Teng |
description | The advanced technologies in location-based services and telecom have yield large volumes of trajectory data. Understanding these data effectively requires intuitive yet accurate visual analysis. The visual analysis of massive trajectory data is challenged by the numerous interactions among different locations, which cause massive clutter. This paper presents a new methodology for visual analysis by integrating algebraic multigrid (AMG) method in data aggregation. The non-parametric method helps to build a multi-layer node representation from a graph which is extracted from trajectory data. The comparison with AMG and other methods shows that AMG method is more advanced in both the spatial representation and the importance of nodes. The new method is tested with real-world dataset of cell-phone signalling records in Beijing. The results show that our method is suitable for processing and creating abstraction of massive trajectory dataset, revealing inherent patterns and creating intuitive and vivid flow maps. |
doi_str_mv | 10.1080/13658816.2018.1512713 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2018_1512713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113706449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGp_ghBwPTWPSSbdKcVHoeBGwV24k0nGlJlJzaRK_72prVtX93D4zrlwELqmZE6JIreUS6EUlXNGqJpTQVlF-RmaZJ8VnKjq_FeL4gBdotk4-powrhZKVWKC3ldDsm2E5IcWQ9faOoI3uN91ybfRN7i36SM02A943GYKOgxtG22bdRhwcLiHXPllcYqwsSaFuMcNJLhCFw660c5Od4reHh9el8_F-uVptbxfF4ZzlQpjgVHpWGmU5IYJyZvaCqhqLhuycFCX0krBMpVtRkRpZVURWjbWiYWjDZ-im2PvNobPnR2T3oRdHPJLzSjlFZFluciUOFImhnGM1ult9D3EvaZEH3bUfzvqw476tGPO3R1zfnAh9vAdYtfoBPsuRBdhMH7U_P-KH_08erQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2113706449</pqid></control><display><type>article</type><title>Integrating algebraic multigrid method in spatial aggregation of massive trajectory data</title><source>Taylor and Francis Science and Technology Collection</source><creator>Wang, Siying ; Du, Yunyan ; Jia, Chen ; Bian, Meng ; Fei, Teng</creator><creatorcontrib>Wang, Siying ; Du, Yunyan ; Jia, Chen ; Bian, Meng ; Fei, Teng</creatorcontrib><description>The advanced technologies in location-based services and telecom have yield large volumes of trajectory data. Understanding these data effectively requires intuitive yet accurate visual analysis. The visual analysis of massive trajectory data is challenged by the numerous interactions among different locations, which cause massive clutter. This paper presents a new methodology for visual analysis by integrating algebraic multigrid (AMG) method in data aggregation. The non-parametric method helps to build a multi-layer node representation from a graph which is extracted from trajectory data. The comparison with AMG and other methods shows that AMG method is more advanced in both the spatial representation and the importance of nodes. The new method is tested with real-world dataset of cell-phone signalling records in Beijing. The results show that our method is suitable for processing and creating abstraction of massive trajectory dataset, revealing inherent patterns and creating intuitive and vivid flow maps.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2018.1512713</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Agglomeration ; Algebra ; algebraic multigrid ; Clutter ; Data management ; Flow mapping ; Graphical representations ; key node identification ; Location based services ; Multilayers ; Spatial aggregation ; Spatial discrimination ; Trajectory analysis ; trajectory visualization</subject><ispartof>International journal of geographical information science : IJGIS, 2018-12, Vol.32 (12), p.2477-2496</ispartof><rights>2018 Informa UK Limited, trading as Taylor & Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3</citedby><cites>FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3</cites><orcidid>0000-0001-5377-1181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Siying</creatorcontrib><creatorcontrib>Du, Yunyan</creatorcontrib><creatorcontrib>Jia, Chen</creatorcontrib><creatorcontrib>Bian, Meng</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><title>Integrating algebraic multigrid method in spatial aggregation of massive trajectory data</title><title>International journal of geographical information science : IJGIS</title><description>The advanced technologies in location-based services and telecom have yield large volumes of trajectory data. Understanding these data effectively requires intuitive yet accurate visual analysis. The visual analysis of massive trajectory data is challenged by the numerous interactions among different locations, which cause massive clutter. This paper presents a new methodology for visual analysis by integrating algebraic multigrid (AMG) method in data aggregation. The non-parametric method helps to build a multi-layer node representation from a graph which is extracted from trajectory data. The comparison with AMG and other methods shows that AMG method is more advanced in both the spatial representation and the importance of nodes. The new method is tested with real-world dataset of cell-phone signalling records in Beijing. The results show that our method is suitable for processing and creating abstraction of massive trajectory dataset, revealing inherent patterns and creating intuitive and vivid flow maps.</description><subject>Agglomeration</subject><subject>Algebra</subject><subject>algebraic multigrid</subject><subject>Clutter</subject><subject>Data management</subject><subject>Flow mapping</subject><subject>Graphical representations</subject><subject>key node identification</subject><subject>Location based services</subject><subject>Multilayers</subject><subject>Spatial aggregation</subject><subject>Spatial discrimination</subject><subject>Trajectory analysis</subject><subject>trajectory visualization</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGp_ghBwPTWPSSbdKcVHoeBGwV24k0nGlJlJzaRK_72prVtX93D4zrlwELqmZE6JIreUS6EUlXNGqJpTQVlF-RmaZJ8VnKjq_FeL4gBdotk4-powrhZKVWKC3ldDsm2E5IcWQ9faOoI3uN91ybfRN7i36SM02A943GYKOgxtG22bdRhwcLiHXPllcYqwsSaFuMcNJLhCFw660c5Od4reHh9el8_F-uVptbxfF4ZzlQpjgVHpWGmU5IYJyZvaCqhqLhuycFCX0krBMpVtRkRpZVURWjbWiYWjDZ-im2PvNobPnR2T3oRdHPJLzSjlFZFluciUOFImhnGM1ult9D3EvaZEH3bUfzvqw476tGPO3R1zfnAh9vAdYtfoBPsuRBdhMH7U_P-KH_08erQ</recordid><startdate>20181202</startdate><enddate>20181202</enddate><creator>Wang, Siying</creator><creator>Du, Yunyan</creator><creator>Jia, Chen</creator><creator>Bian, Meng</creator><creator>Fei, Teng</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5377-1181</orcidid></search><sort><creationdate>20181202</creationdate><title>Integrating algebraic multigrid method in spatial aggregation of massive trajectory data</title><author>Wang, Siying ; Du, Yunyan ; Jia, Chen ; Bian, Meng ; Fei, Teng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agglomeration</topic><topic>Algebra</topic><topic>algebraic multigrid</topic><topic>Clutter</topic><topic>Data management</topic><topic>Flow mapping</topic><topic>Graphical representations</topic><topic>key node identification</topic><topic>Location based services</topic><topic>Multilayers</topic><topic>Spatial aggregation</topic><topic>Spatial discrimination</topic><topic>Trajectory analysis</topic><topic>trajectory visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Siying</creatorcontrib><creatorcontrib>Du, Yunyan</creatorcontrib><creatorcontrib>Jia, Chen</creatorcontrib><creatorcontrib>Bian, Meng</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Siying</au><au>Du, Yunyan</au><au>Jia, Chen</au><au>Bian, Meng</au><au>Fei, Teng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating algebraic multigrid method in spatial aggregation of massive trajectory data</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2018-12-02</date><risdate>2018</risdate><volume>32</volume><issue>12</issue><spage>2477</spage><epage>2496</epage><pages>2477-2496</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>The advanced technologies in location-based services and telecom have yield large volumes of trajectory data. Understanding these data effectively requires intuitive yet accurate visual analysis. The visual analysis of massive trajectory data is challenged by the numerous interactions among different locations, which cause massive clutter. This paper presents a new methodology for visual analysis by integrating algebraic multigrid (AMG) method in data aggregation. The non-parametric method helps to build a multi-layer node representation from a graph which is extracted from trajectory data. The comparison with AMG and other methods shows that AMG method is more advanced in both the spatial representation and the importance of nodes. The new method is tested with real-world dataset of cell-phone signalling records in Beijing. The results show that our method is suitable for processing and creating abstraction of massive trajectory dataset, revealing inherent patterns and creating intuitive and vivid flow maps.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/13658816.2018.1512713</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5377-1181</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-8816 |
ispartof | International journal of geographical information science : IJGIS, 2018-12, Vol.32 (12), p.2477-2496 |
issn | 1365-8816 1362-3087 1365-8824 |
language | eng |
recordid | cdi_crossref_primary_10_1080_13658816_2018_1512713 |
source | Taylor and Francis Science and Technology Collection |
subjects | Agglomeration Algebra algebraic multigrid Clutter Data management Flow mapping Graphical representations key node identification Location based services Multilayers Spatial aggregation Spatial discrimination Trajectory analysis trajectory visualization |
title | Integrating algebraic multigrid method in spatial aggregation of massive trajectory data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20algebraic%20multigrid%20method%20in%20spatial%20aggregation%20of%20massive%20trajectory%20data&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Wang,%20Siying&rft.date=2018-12-02&rft.volume=32&rft.issue=12&rft.spage=2477&rft.epage=2496&rft.pages=2477-2496&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2018.1512713&rft_dat=%3Cproquest_cross%3E2113706449%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2113706449&rft_id=info:pmid/&rfr_iscdi=true |