Loading…

Integrating algebraic multigrid method in spatial aggregation of massive trajectory data

The advanced technologies in location-based services and telecom have yield large volumes of trajectory data. Understanding these data effectively requires intuitive yet accurate visual analysis. The visual analysis of massive trajectory data is challenged by the numerous interactions among differen...

Full description

Saved in:
Bibliographic Details
Published in:International journal of geographical information science : IJGIS 2018-12, Vol.32 (12), p.2477-2496
Main Authors: Wang, Siying, Du, Yunyan, Jia, Chen, Bian, Meng, Fei, Teng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3
cites cdi_FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3
container_end_page 2496
container_issue 12
container_start_page 2477
container_title International journal of geographical information science : IJGIS
container_volume 32
creator Wang, Siying
Du, Yunyan
Jia, Chen
Bian, Meng
Fei, Teng
description The advanced technologies in location-based services and telecom have yield large volumes of trajectory data. Understanding these data effectively requires intuitive yet accurate visual analysis. The visual analysis of massive trajectory data is challenged by the numerous interactions among different locations, which cause massive clutter. This paper presents a new methodology for visual analysis by integrating algebraic multigrid (AMG) method in data aggregation. The non-parametric method helps to build a multi-layer node representation from a graph which is extracted from trajectory data. The comparison with AMG and other methods shows that AMG method is more advanced in both the spatial representation and the importance of nodes. The new method is tested with real-world dataset of cell-phone signalling records in Beijing. The results show that our method is suitable for processing and creating abstraction of massive trajectory dataset, revealing inherent patterns and creating intuitive and vivid flow maps.
doi_str_mv 10.1080/13658816.2018.1512713
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2018_1512713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113706449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGp_ghBwPTWPSSbdKcVHoeBGwV24k0nGlJlJzaRK_72prVtX93D4zrlwELqmZE6JIreUS6EUlXNGqJpTQVlF-RmaZJ8VnKjq_FeL4gBdotk4-powrhZKVWKC3ldDsm2E5IcWQ9faOoI3uN91ybfRN7i36SM02A943GYKOgxtG22bdRhwcLiHXPllcYqwsSaFuMcNJLhCFw660c5Od4reHh9el8_F-uVptbxfF4ZzlQpjgVHpWGmU5IYJyZvaCqhqLhuycFCX0krBMpVtRkRpZVURWjbWiYWjDZ-im2PvNobPnR2T3oRdHPJLzSjlFZFluciUOFImhnGM1ult9D3EvaZEH3bUfzvqw476tGPO3R1zfnAh9vAdYtfoBPsuRBdhMH7U_P-KH_08erQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2113706449</pqid></control><display><type>article</type><title>Integrating algebraic multigrid method in spatial aggregation of massive trajectory data</title><source>Taylor and Francis Science and Technology Collection</source><creator>Wang, Siying ; Du, Yunyan ; Jia, Chen ; Bian, Meng ; Fei, Teng</creator><creatorcontrib>Wang, Siying ; Du, Yunyan ; Jia, Chen ; Bian, Meng ; Fei, Teng</creatorcontrib><description>The advanced technologies in location-based services and telecom have yield large volumes of trajectory data. Understanding these data effectively requires intuitive yet accurate visual analysis. The visual analysis of massive trajectory data is challenged by the numerous interactions among different locations, which cause massive clutter. This paper presents a new methodology for visual analysis by integrating algebraic multigrid (AMG) method in data aggregation. The non-parametric method helps to build a multi-layer node representation from a graph which is extracted from trajectory data. The comparison with AMG and other methods shows that AMG method is more advanced in both the spatial representation and the importance of nodes. The new method is tested with real-world dataset of cell-phone signalling records in Beijing. The results show that our method is suitable for processing and creating abstraction of massive trajectory dataset, revealing inherent patterns and creating intuitive and vivid flow maps.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2018.1512713</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Agglomeration ; Algebra ; algebraic multigrid ; Clutter ; Data management ; Flow mapping ; Graphical representations ; key node identification ; Location based services ; Multilayers ; Spatial aggregation ; Spatial discrimination ; Trajectory analysis ; trajectory visualization</subject><ispartof>International journal of geographical information science : IJGIS, 2018-12, Vol.32 (12), p.2477-2496</ispartof><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3</citedby><cites>FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3</cites><orcidid>0000-0001-5377-1181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Siying</creatorcontrib><creatorcontrib>Du, Yunyan</creatorcontrib><creatorcontrib>Jia, Chen</creatorcontrib><creatorcontrib>Bian, Meng</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><title>Integrating algebraic multigrid method in spatial aggregation of massive trajectory data</title><title>International journal of geographical information science : IJGIS</title><description>The advanced technologies in location-based services and telecom have yield large volumes of trajectory data. Understanding these data effectively requires intuitive yet accurate visual analysis. The visual analysis of massive trajectory data is challenged by the numerous interactions among different locations, which cause massive clutter. This paper presents a new methodology for visual analysis by integrating algebraic multigrid (AMG) method in data aggregation. The non-parametric method helps to build a multi-layer node representation from a graph which is extracted from trajectory data. The comparison with AMG and other methods shows that AMG method is more advanced in both the spatial representation and the importance of nodes. The new method is tested with real-world dataset of cell-phone signalling records in Beijing. The results show that our method is suitable for processing and creating abstraction of massive trajectory dataset, revealing inherent patterns and creating intuitive and vivid flow maps.</description><subject>Agglomeration</subject><subject>Algebra</subject><subject>algebraic multigrid</subject><subject>Clutter</subject><subject>Data management</subject><subject>Flow mapping</subject><subject>Graphical representations</subject><subject>key node identification</subject><subject>Location based services</subject><subject>Multilayers</subject><subject>Spatial aggregation</subject><subject>Spatial discrimination</subject><subject>Trajectory analysis</subject><subject>trajectory visualization</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGp_ghBwPTWPSSbdKcVHoeBGwV24k0nGlJlJzaRK_72prVtX93D4zrlwELqmZE6JIreUS6EUlXNGqJpTQVlF-RmaZJ8VnKjq_FeL4gBdotk4-powrhZKVWKC3ldDsm2E5IcWQ9faOoI3uN91ybfRN7i36SM02A943GYKOgxtG22bdRhwcLiHXPllcYqwsSaFuMcNJLhCFw660c5Od4reHh9el8_F-uVptbxfF4ZzlQpjgVHpWGmU5IYJyZvaCqhqLhuycFCX0krBMpVtRkRpZVURWjbWiYWjDZ-im2PvNobPnR2T3oRdHPJLzSjlFZFluciUOFImhnGM1ult9D3EvaZEH3bUfzvqw476tGPO3R1zfnAh9vAdYtfoBPsuRBdhMH7U_P-KH_08erQ</recordid><startdate>20181202</startdate><enddate>20181202</enddate><creator>Wang, Siying</creator><creator>Du, Yunyan</creator><creator>Jia, Chen</creator><creator>Bian, Meng</creator><creator>Fei, Teng</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5377-1181</orcidid></search><sort><creationdate>20181202</creationdate><title>Integrating algebraic multigrid method in spatial aggregation of massive trajectory data</title><author>Wang, Siying ; Du, Yunyan ; Jia, Chen ; Bian, Meng ; Fei, Teng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agglomeration</topic><topic>Algebra</topic><topic>algebraic multigrid</topic><topic>Clutter</topic><topic>Data management</topic><topic>Flow mapping</topic><topic>Graphical representations</topic><topic>key node identification</topic><topic>Location based services</topic><topic>Multilayers</topic><topic>Spatial aggregation</topic><topic>Spatial discrimination</topic><topic>Trajectory analysis</topic><topic>trajectory visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Siying</creatorcontrib><creatorcontrib>Du, Yunyan</creatorcontrib><creatorcontrib>Jia, Chen</creatorcontrib><creatorcontrib>Bian, Meng</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Siying</au><au>Du, Yunyan</au><au>Jia, Chen</au><au>Bian, Meng</au><au>Fei, Teng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating algebraic multigrid method in spatial aggregation of massive trajectory data</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2018-12-02</date><risdate>2018</risdate><volume>32</volume><issue>12</issue><spage>2477</spage><epage>2496</epage><pages>2477-2496</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>The advanced technologies in location-based services and telecom have yield large volumes of trajectory data. Understanding these data effectively requires intuitive yet accurate visual analysis. The visual analysis of massive trajectory data is challenged by the numerous interactions among different locations, which cause massive clutter. This paper presents a new methodology for visual analysis by integrating algebraic multigrid (AMG) method in data aggregation. The non-parametric method helps to build a multi-layer node representation from a graph which is extracted from trajectory data. The comparison with AMG and other methods shows that AMG method is more advanced in both the spatial representation and the importance of nodes. The new method is tested with real-world dataset of cell-phone signalling records in Beijing. The results show that our method is suitable for processing and creating abstraction of massive trajectory dataset, revealing inherent patterns and creating intuitive and vivid flow maps.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/13658816.2018.1512713</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5377-1181</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1365-8816
ispartof International journal of geographical information science : IJGIS, 2018-12, Vol.32 (12), p.2477-2496
issn 1365-8816
1362-3087
1365-8824
language eng
recordid cdi_crossref_primary_10_1080_13658816_2018_1512713
source Taylor and Francis Science and Technology Collection
subjects Agglomeration
Algebra
algebraic multigrid
Clutter
Data management
Flow mapping
Graphical representations
key node identification
Location based services
Multilayers
Spatial aggregation
Spatial discrimination
Trajectory analysis
trajectory visualization
title Integrating algebraic multigrid method in spatial aggregation of massive trajectory data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20algebraic%20multigrid%20method%20in%20spatial%20aggregation%20of%20massive%20trajectory%20data&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Wang,%20Siying&rft.date=2018-12-02&rft.volume=32&rft.issue=12&rft.spage=2477&rft.epage=2496&rft.pages=2477-2496&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2018.1512713&rft_dat=%3Cproquest_cross%3E2113706449%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-cea216f24c863c2563dbe5a7b36d09fab46e652ea2be52054e677014def59f1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2113706449&rft_id=info:pmid/&rfr_iscdi=true