Loading…

Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows

The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modelling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results in some flow configurations. In the last few yea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of turbulence 2022-02, Vol.23 (1-2), p.1-28
Main Authors: Sáez de Ocáriz Borde, Haitz, Sondak, David, Protopapas, Pavlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793
cites cdi_FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793
container_end_page 28
container_issue 1-2
container_start_page 1
container_title Journal of turbulence
container_volume 23
creator Sáez de Ocáriz Borde, Haitz
Sondak, David
Protopapas, Pavlos
description The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modelling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results in some flow configurations. In the last few years, there has been a surge of work aiming at using data-driven approaches to tackle this problem. The majority of previous work has focused on the development of fully connected networks for modelling the anisotropic Reynolds stress tensor. In this paper, we expand upon recent work for turbulent channel flow and develop new convolutional neural network (CNN) models that are able to accurately predict the normalised anisotropic Reynolds stress tensor. We apply the new CNN model to a number of one-dimensional turbulent flows. Additionally, we present interpretability techniques that help drive the model design and provide guidance on the model behaviour in relation to the underlying physics.
doi_str_mv 10.1080/14685248.2021.1999459
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_14685248_2021_1999459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_14685248_2021_1999459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793</originalsourceid><addsrcrecordid>eNp9kN1KxDAQhYMouK4-gpAX6JqmTdvcKYt_IHij1yFtJhjNJkuSuvQFfG5TdwWvvDrDnJkzzIfQZUlWJenIVVk3HaN1t6KElquSc14zfoQWc7-YjeM_9Sk6i_GdkLKhrFmgr7V3n96OyXgnLXYwhh9JOx8-8MYrsBFLp7BxCcI2QJK9sSZNWPuA0xtk00Sfgt-aAQeYnLcq4pgCxIgTuJjHjMNpDP1owSXsHRTKbLKzP6mt38VzdKKljXBx0CV6vbt9WT8UT8_3j-ubp2KoWJuKQULXttBVbVP1NVGUMqhlLlrK1dBrTkBzyRWDJpNRfaMqRUs6MKkJqJZXS8T2uUPwMQbQYhvMRoZJlETMMMUvTDHDFAeYee96v2dc_nsjMx2rRJKT9UEH6QYTRfV_xDdAaoFf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows</title><source>Taylor and Francis Science and Technology Collection</source><creator>Sáez de Ocáriz Borde, Haitz ; Sondak, David ; Protopapas, Pavlos</creator><creatorcontrib>Sáez de Ocáriz Borde, Haitz ; Sondak, David ; Protopapas, Pavlos</creatorcontrib><description>The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modelling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results in some flow configurations. In the last few years, there has been a surge of work aiming at using data-driven approaches to tackle this problem. The majority of previous work has focused on the development of fully connected networks for modelling the anisotropic Reynolds stress tensor. In this paper, we expand upon recent work for turbulent channel flow and develop new convolutional neural network (CNN) models that are able to accurately predict the normalised anisotropic Reynolds stress tensor. We apply the new CNN model to a number of one-dimensional turbulent flows. Additionally, we present interpretability techniques that help drive the model design and provide guidance on the model behaviour in relation to the underlying physics.</description><identifier>ISSN: 1468-5248</identifier><identifier>EISSN: 1468-5248</identifier><identifier>DOI: 10.1080/14685248.2021.1999459</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>convolutional neural networks ; deep learning ; interpretability ; Reynolds-averaged Navier-Stokes ; Turbulence modelling</subject><ispartof>Journal of turbulence, 2022-02, Vol.23 (1-2), p.1-28</ispartof><rights>2021 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793</citedby><cites>FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sáez de Ocáriz Borde, Haitz</creatorcontrib><creatorcontrib>Sondak, David</creatorcontrib><creatorcontrib>Protopapas, Pavlos</creatorcontrib><title>Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows</title><title>Journal of turbulence</title><description>The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modelling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results in some flow configurations. In the last few years, there has been a surge of work aiming at using data-driven approaches to tackle this problem. The majority of previous work has focused on the development of fully connected networks for modelling the anisotropic Reynolds stress tensor. In this paper, we expand upon recent work for turbulent channel flow and develop new convolutional neural network (CNN) models that are able to accurately predict the normalised anisotropic Reynolds stress tensor. We apply the new CNN model to a number of one-dimensional turbulent flows. Additionally, we present interpretability techniques that help drive the model design and provide guidance on the model behaviour in relation to the underlying physics.</description><subject>convolutional neural networks</subject><subject>deep learning</subject><subject>interpretability</subject><subject>Reynolds-averaged Navier-Stokes</subject><subject>Turbulence modelling</subject><issn>1468-5248</issn><issn>1468-5248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kN1KxDAQhYMouK4-gpAX6JqmTdvcKYt_IHij1yFtJhjNJkuSuvQFfG5TdwWvvDrDnJkzzIfQZUlWJenIVVk3HaN1t6KElquSc14zfoQWc7-YjeM_9Sk6i_GdkLKhrFmgr7V3n96OyXgnLXYwhh9JOx8-8MYrsBFLp7BxCcI2QJK9sSZNWPuA0xtk00Sfgt-aAQeYnLcq4pgCxIgTuJjHjMNpDP1owSXsHRTKbLKzP6mt38VzdKKljXBx0CV6vbt9WT8UT8_3j-ubp2KoWJuKQULXttBVbVP1NVGUMqhlLlrK1dBrTkBzyRWDJpNRfaMqRUs6MKkJqJZXS8T2uUPwMQbQYhvMRoZJlETMMMUvTDHDFAeYee96v2dc_nsjMx2rRJKT9UEH6QYTRfV_xDdAaoFf</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Sáez de Ocáriz Borde, Haitz</creator><creator>Sondak, David</creator><creator>Protopapas, Pavlos</creator><general>Taylor &amp; Francis</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows</title><author>Sáez de Ocáriz Borde, Haitz ; Sondak, David ; Protopapas, Pavlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>convolutional neural networks</topic><topic>deep learning</topic><topic>interpretability</topic><topic>Reynolds-averaged Navier-Stokes</topic><topic>Turbulence modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sáez de Ocáriz Borde, Haitz</creatorcontrib><creatorcontrib>Sondak, David</creatorcontrib><creatorcontrib>Protopapas, Pavlos</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><jtitle>Journal of turbulence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sáez de Ocáriz Borde, Haitz</au><au>Sondak, David</au><au>Protopapas, Pavlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows</atitle><jtitle>Journal of turbulence</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>23</volume><issue>1-2</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>1468-5248</issn><eissn>1468-5248</eissn><abstract>The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modelling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results in some flow configurations. In the last few years, there has been a surge of work aiming at using data-driven approaches to tackle this problem. The majority of previous work has focused on the development of fully connected networks for modelling the anisotropic Reynolds stress tensor. In this paper, we expand upon recent work for turbulent channel flow and develop new convolutional neural network (CNN) models that are able to accurately predict the normalised anisotropic Reynolds stress tensor. We apply the new CNN model to a number of one-dimensional turbulent flows. Additionally, we present interpretability techniques that help drive the model design and provide guidance on the model behaviour in relation to the underlying physics.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/14685248.2021.1999459</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1468-5248
ispartof Journal of turbulence, 2022-02, Vol.23 (1-2), p.1-28
issn 1468-5248
1468-5248
language eng
recordid cdi_crossref_primary_10_1080_14685248_2021_1999459
source Taylor and Francis Science and Technology Collection
subjects convolutional neural networks
deep learning
interpretability
Reynolds-averaged Navier-Stokes
Turbulence modelling
title Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20neural%20network%20models%20and%20interpretability%20for%20the%20anisotropic%20reynolds%20stress%20tensor%20in%20turbulent%20one-dimensional%20flows&rft.jtitle=Journal%20of%20turbulence&rft.au=S%C3%A1ez%20de%20Oc%C3%A1riz%20Borde,%20Haitz&rft.date=2022-02-01&rft.volume=23&rft.issue=1-2&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=1468-5248&rft.eissn=1468-5248&rft_id=info:doi/10.1080/14685248.2021.1999459&rft_dat=%3Ccrossref_infor%3E10_1080_14685248_2021_1999459%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true