Loading…
Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows
The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modelling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results in some flow configurations. In the last few yea...
Saved in:
Published in: | Journal of turbulence 2022-02, Vol.23 (1-2), p.1-28 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793 |
container_end_page | 28 |
container_issue | 1-2 |
container_start_page | 1 |
container_title | Journal of turbulence |
container_volume | 23 |
creator | Sáez de Ocáriz Borde, Haitz Sondak, David Protopapas, Pavlos |
description | The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modelling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results in some flow configurations. In the last few years, there has been a surge of work aiming at using data-driven approaches to tackle this problem. The majority of previous work has focused on the development of fully connected networks for modelling the anisotropic Reynolds stress tensor. In this paper, we expand upon recent work for turbulent channel flow and develop new convolutional neural network (CNN) models that are able to accurately predict the normalised anisotropic Reynolds stress tensor. We apply the new CNN model to a number of one-dimensional turbulent flows. Additionally, we present interpretability techniques that help drive the model design and provide guidance on the model behaviour in relation to the underlying physics. |
doi_str_mv | 10.1080/14685248.2021.1999459 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_14685248_2021_1999459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_14685248_2021_1999459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793</originalsourceid><addsrcrecordid>eNp9kN1KxDAQhYMouK4-gpAX6JqmTdvcKYt_IHij1yFtJhjNJkuSuvQFfG5TdwWvvDrDnJkzzIfQZUlWJenIVVk3HaN1t6KElquSc14zfoQWc7-YjeM_9Sk6i_GdkLKhrFmgr7V3n96OyXgnLXYwhh9JOx8-8MYrsBFLp7BxCcI2QJK9sSZNWPuA0xtk00Sfgt-aAQeYnLcq4pgCxIgTuJjHjMNpDP1owSXsHRTKbLKzP6mt38VzdKKljXBx0CV6vbt9WT8UT8_3j-ubp2KoWJuKQULXttBVbVP1NVGUMqhlLlrK1dBrTkBzyRWDJpNRfaMqRUs6MKkJqJZXS8T2uUPwMQbQYhvMRoZJlETMMMUvTDHDFAeYee96v2dc_nsjMx2rRJKT9UEH6QYTRfV_xDdAaoFf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows</title><source>Taylor and Francis Science and Technology Collection</source><creator>Sáez de Ocáriz Borde, Haitz ; Sondak, David ; Protopapas, Pavlos</creator><creatorcontrib>Sáez de Ocáriz Borde, Haitz ; Sondak, David ; Protopapas, Pavlos</creatorcontrib><description>The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modelling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results in some flow configurations. In the last few years, there has been a surge of work aiming at using data-driven approaches to tackle this problem. The majority of previous work has focused on the development of fully connected networks for modelling the anisotropic Reynolds stress tensor. In this paper, we expand upon recent work for turbulent channel flow and develop new convolutional neural network (CNN) models that are able to accurately predict the normalised anisotropic Reynolds stress tensor. We apply the new CNN model to a number of one-dimensional turbulent flows. Additionally, we present interpretability techniques that help drive the model design and provide guidance on the model behaviour in relation to the underlying physics.</description><identifier>ISSN: 1468-5248</identifier><identifier>EISSN: 1468-5248</identifier><identifier>DOI: 10.1080/14685248.2021.1999459</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>convolutional neural networks ; deep learning ; interpretability ; Reynolds-averaged Navier-Stokes ; Turbulence modelling</subject><ispartof>Journal of turbulence, 2022-02, Vol.23 (1-2), p.1-28</ispartof><rights>2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793</citedby><cites>FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sáez de Ocáriz Borde, Haitz</creatorcontrib><creatorcontrib>Sondak, David</creatorcontrib><creatorcontrib>Protopapas, Pavlos</creatorcontrib><title>Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows</title><title>Journal of turbulence</title><description>The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modelling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results in some flow configurations. In the last few years, there has been a surge of work aiming at using data-driven approaches to tackle this problem. The majority of previous work has focused on the development of fully connected networks for modelling the anisotropic Reynolds stress tensor. In this paper, we expand upon recent work for turbulent channel flow and develop new convolutional neural network (CNN) models that are able to accurately predict the normalised anisotropic Reynolds stress tensor. We apply the new CNN model to a number of one-dimensional turbulent flows. Additionally, we present interpretability techniques that help drive the model design and provide guidance on the model behaviour in relation to the underlying physics.</description><subject>convolutional neural networks</subject><subject>deep learning</subject><subject>interpretability</subject><subject>Reynolds-averaged Navier-Stokes</subject><subject>Turbulence modelling</subject><issn>1468-5248</issn><issn>1468-5248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kN1KxDAQhYMouK4-gpAX6JqmTdvcKYt_IHij1yFtJhjNJkuSuvQFfG5TdwWvvDrDnJkzzIfQZUlWJenIVVk3HaN1t6KElquSc14zfoQWc7-YjeM_9Sk6i_GdkLKhrFmgr7V3n96OyXgnLXYwhh9JOx8-8MYrsBFLp7BxCcI2QJK9sSZNWPuA0xtk00Sfgt-aAQeYnLcq4pgCxIgTuJjHjMNpDP1owSXsHRTKbLKzP6mt38VzdKKljXBx0CV6vbt9WT8UT8_3j-ubp2KoWJuKQULXttBVbVP1NVGUMqhlLlrK1dBrTkBzyRWDJpNRfaMqRUs6MKkJqJZXS8T2uUPwMQbQYhvMRoZJlETMMMUvTDHDFAeYee96v2dc_nsjMx2rRJKT9UEH6QYTRfV_xDdAaoFf</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Sáez de Ocáriz Borde, Haitz</creator><creator>Sondak, David</creator><creator>Protopapas, Pavlos</creator><general>Taylor & Francis</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows</title><author>Sáez de Ocáriz Borde, Haitz ; Sondak, David ; Protopapas, Pavlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>convolutional neural networks</topic><topic>deep learning</topic><topic>interpretability</topic><topic>Reynolds-averaged Navier-Stokes</topic><topic>Turbulence modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sáez de Ocáriz Borde, Haitz</creatorcontrib><creatorcontrib>Sondak, David</creatorcontrib><creatorcontrib>Protopapas, Pavlos</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><jtitle>Journal of turbulence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sáez de Ocáriz Borde, Haitz</au><au>Sondak, David</au><au>Protopapas, Pavlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows</atitle><jtitle>Journal of turbulence</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>23</volume><issue>1-2</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>1468-5248</issn><eissn>1468-5248</eissn><abstract>The Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulence applications. They require accurately modelling the anisotropic Reynolds stress tensor, for which traditional Reynolds stress closure models only yield reliable results in some flow configurations. In the last few years, there has been a surge of work aiming at using data-driven approaches to tackle this problem. The majority of previous work has focused on the development of fully connected networks for modelling the anisotropic Reynolds stress tensor. In this paper, we expand upon recent work for turbulent channel flow and develop new convolutional neural network (CNN) models that are able to accurately predict the normalised anisotropic Reynolds stress tensor. We apply the new CNN model to a number of one-dimensional turbulent flows. Additionally, we present interpretability techniques that help drive the model design and provide guidance on the model behaviour in relation to the underlying physics.</abstract><pub>Taylor & Francis</pub><doi>10.1080/14685248.2021.1999459</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-5248 |
ispartof | Journal of turbulence, 2022-02, Vol.23 (1-2), p.1-28 |
issn | 1468-5248 1468-5248 |
language | eng |
recordid | cdi_crossref_primary_10_1080_14685248_2021_1999459 |
source | Taylor and Francis Science and Technology Collection |
subjects | convolutional neural networks deep learning interpretability Reynolds-averaged Navier-Stokes Turbulence modelling |
title | Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20neural%20network%20models%20and%20interpretability%20for%20the%20anisotropic%20reynolds%20stress%20tensor%20in%20turbulent%20one-dimensional%20flows&rft.jtitle=Journal%20of%20turbulence&rft.au=S%C3%A1ez%20de%20Oc%C3%A1riz%20Borde,%20Haitz&rft.date=2022-02-01&rft.volume=23&rft.issue=1-2&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=1468-5248&rft.eissn=1468-5248&rft_id=info:doi/10.1080/14685248.2021.1999459&rft_dat=%3Ccrossref_infor%3E10_1080_14685248_2021_1999459%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-cae877e83763b40d225e4a40d729dcbf90ef9a9d5e6108db6d3d212c5af0ed793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |