Loading…

Portfolio optimization under model uncertainty and BSDE games

We consider robust optimal portfolio problems for markets modeled by (possibly non-Markovian) Itô-Lévy processes. Mathematically, the situation can be described as a stochastic differential game, where one of the players (the agent) is trying to find the portfolio that maximizes the utility of her t...

Full description

Saved in:
Bibliographic Details
Published in:Quantitative finance 2011-11, Vol.11 (11), p.1665-1674
Main Authors: Øksendal, Bernt, Sulem, Agnès
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-b7cf4523272a122a1a97daac709a23bc1bafc5da0ed993e67b9c9dd51c73b0c23
cites cdi_FETCH-LOGICAL-c412t-b7cf4523272a122a1a97daac709a23bc1bafc5da0ed993e67b9c9dd51c73b0c23
container_end_page 1674
container_issue 11
container_start_page 1665
container_title Quantitative finance
container_volume 11
creator Øksendal, Bernt
Sulem, Agnès
description We consider robust optimal portfolio problems for markets modeled by (possibly non-Markovian) Itô-Lévy processes. Mathematically, the situation can be described as a stochastic differential game, where one of the players (the agent) is trying to find the portfolio that maximizes the utility of her terminal wealth, while the other player ("the market") is controlling some of the unknown parameters of the market (e.g., the underlying probability measure, representing a model uncertainty problem) and is trying to minimize this maximal utility of the agent. This leads to a worst case scenario control problem for the agent. In the Markovian case, such problems can be studied using the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation, but these methods do not work in the non-Markovian case. We approach the problem by transforming it into a stochastic differential game for backward stochastic differential equations (a BSDE game). Using comparison theorems for BSDEs with jumps we arrive at criteria for the solution of such games in the form of a kind of non-Markovian analogue of the HJBI equation. The results are illustrated by examples.
doi_str_mv 10.1080/14697688.2011.615219
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_14697688_2011_615219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495081291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-b7cf4523272a122a1a97daac709a23bc1bafc5da0ed993e67b9c9dd51c73b0c23</originalsourceid><addsrcrecordid>eNp9kFtLxDAQhYMouK7-Ax-K710n6SXNg4iX9QILCupzmCapZGmbNcki66-3peqjD8MchnPOwEfIKYUFhQrOaV4KXlbVggGli5IWjIo9MhvPKS9Fuf-nq-qQHIWwBqAFgJiRi2fnY-Na6xK3ibazXxit65Ntr41POqdNO2hlfETbx12CvU6uX26XyTt2JhyTgwbbYE5-9py83S1fbx7S1dP9483VKlU5ZTGtuWrygmWMM6RsGBRcIyoOAllWK1pjowqNYLQQmSl5LZTQuqCKZzUols3J2dS78e5ja0KUa7f1_fBSCoAio8BHUz6ZlHcheNPIjbcd-p2kIEdO8peTHDnJidMQu5xitm-c7_DT-VbLiLvW-cZjr2yQ2b8N3x0fbvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900531072</pqid></control><display><type>article</type><title>Portfolio optimization under model uncertainty and BSDE games</title><source>EconLit s plnými texty</source><source>BSC - Ebsco (Business Source Ultimate)</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Øksendal, Bernt ; Sulem, Agnès</creator><creatorcontrib>Øksendal, Bernt ; Sulem, Agnès</creatorcontrib><description>We consider robust optimal portfolio problems for markets modeled by (possibly non-Markovian) Itô-Lévy processes. Mathematically, the situation can be described as a stochastic differential game, where one of the players (the agent) is trying to find the portfolio that maximizes the utility of her terminal wealth, while the other player ("the market") is controlling some of the unknown parameters of the market (e.g., the underlying probability measure, representing a model uncertainty problem) and is trying to minimize this maximal utility of the agent. This leads to a worst case scenario control problem for the agent. In the Markovian case, such problems can be studied using the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation, but these methods do not work in the non-Markovian case. We approach the problem by transforming it into a stochastic differential game for backward stochastic differential equations (a BSDE game). Using comparison theorems for BSDEs with jumps we arrive at criteria for the solution of such games in the form of a kind of non-Markovian analogue of the HJBI equation. The results are illustrated by examples.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2011.615219</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>BSDEs ; Differential equations ; Exponential utility ; G11, C70 ; Game theory ; Games ; Itô-Lévy processes ; Markov analysis ; Mathematical models ; Model uncertainty ; Portfolio management ; Portfolio optimization ; Stochastic differential games ; Studies</subject><ispartof>Quantitative finance, 2011-11, Vol.11 (11), p.1665-1674</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><rights>Copyright American Institute of Physics 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-b7cf4523272a122a1a97daac709a23bc1bafc5da0ed993e67b9c9dd51c73b0c23</citedby><cites>FETCH-LOGICAL-c412t-b7cf4523272a122a1a97daac709a23bc1bafc5da0ed993e67b9c9dd51c73b0c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Øksendal, Bernt</creatorcontrib><creatorcontrib>Sulem, Agnès</creatorcontrib><title>Portfolio optimization under model uncertainty and BSDE games</title><title>Quantitative finance</title><description>We consider robust optimal portfolio problems for markets modeled by (possibly non-Markovian) Itô-Lévy processes. Mathematically, the situation can be described as a stochastic differential game, where one of the players (the agent) is trying to find the portfolio that maximizes the utility of her terminal wealth, while the other player ("the market") is controlling some of the unknown parameters of the market (e.g., the underlying probability measure, representing a model uncertainty problem) and is trying to minimize this maximal utility of the agent. This leads to a worst case scenario control problem for the agent. In the Markovian case, such problems can be studied using the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation, but these methods do not work in the non-Markovian case. We approach the problem by transforming it into a stochastic differential game for backward stochastic differential equations (a BSDE game). Using comparison theorems for BSDEs with jumps we arrive at criteria for the solution of such games in the form of a kind of non-Markovian analogue of the HJBI equation. The results are illustrated by examples.</description><subject>BSDEs</subject><subject>Differential equations</subject><subject>Exponential utility</subject><subject>G11, C70</subject><subject>Game theory</subject><subject>Games</subject><subject>Itô-Lévy processes</subject><subject>Markov analysis</subject><subject>Mathematical models</subject><subject>Model uncertainty</subject><subject>Portfolio management</subject><subject>Portfolio optimization</subject><subject>Stochastic differential games</subject><subject>Studies</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLxDAQhYMouK7-Ax-K710n6SXNg4iX9QILCupzmCapZGmbNcki66-3peqjD8MchnPOwEfIKYUFhQrOaV4KXlbVggGli5IWjIo9MhvPKS9Fuf-nq-qQHIWwBqAFgJiRi2fnY-Na6xK3ibazXxit65Ntr41POqdNO2hlfETbx12CvU6uX26XyTt2JhyTgwbbYE5-9py83S1fbx7S1dP9483VKlU5ZTGtuWrygmWMM6RsGBRcIyoOAllWK1pjowqNYLQQmSl5LZTQuqCKZzUols3J2dS78e5ja0KUa7f1_fBSCoAio8BHUz6ZlHcheNPIjbcd-p2kIEdO8peTHDnJidMQu5xitm-c7_DT-VbLiLvW-cZjr2yQ2b8N3x0fbvA</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Øksendal, Bernt</creator><creator>Sulem, Agnès</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201111</creationdate><title>Portfolio optimization under model uncertainty and BSDE games</title><author>Øksendal, Bernt ; Sulem, Agnès</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-b7cf4523272a122a1a97daac709a23bc1bafc5da0ed993e67b9c9dd51c73b0c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>BSDEs</topic><topic>Differential equations</topic><topic>Exponential utility</topic><topic>G11, C70</topic><topic>Game theory</topic><topic>Games</topic><topic>Itô-Lévy processes</topic><topic>Markov analysis</topic><topic>Mathematical models</topic><topic>Model uncertainty</topic><topic>Portfolio management</topic><topic>Portfolio optimization</topic><topic>Stochastic differential games</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Øksendal, Bernt</creatorcontrib><creatorcontrib>Sulem, Agnès</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Øksendal, Bernt</au><au>Sulem, Agnès</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portfolio optimization under model uncertainty and BSDE games</atitle><jtitle>Quantitative finance</jtitle><date>2011-11</date><risdate>2011</risdate><volume>11</volume><issue>11</issue><spage>1665</spage><epage>1674</epage><pages>1665-1674</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>We consider robust optimal portfolio problems for markets modeled by (possibly non-Markovian) Itô-Lévy processes. Mathematically, the situation can be described as a stochastic differential game, where one of the players (the agent) is trying to find the portfolio that maximizes the utility of her terminal wealth, while the other player ("the market") is controlling some of the unknown parameters of the market (e.g., the underlying probability measure, representing a model uncertainty problem) and is trying to minimize this maximal utility of the agent. This leads to a worst case scenario control problem for the agent. In the Markovian case, such problems can be studied using the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation, but these methods do not work in the non-Markovian case. We approach the problem by transforming it into a stochastic differential game for backward stochastic differential equations (a BSDE game). Using comparison theorems for BSDEs with jumps we arrive at criteria for the solution of such games in the form of a kind of non-Markovian analogue of the HJBI equation. The results are illustrated by examples.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2011.615219</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-7688
ispartof Quantitative finance, 2011-11, Vol.11 (11), p.1665-1674
issn 1469-7688
1469-7696
language eng
recordid cdi_crossref_primary_10_1080_14697688_2011_615219
source EconLit s plnými texty; BSC - Ebsco (Business Source Ultimate); Taylor and Francis Social Sciences and Humanities Collection
subjects BSDEs
Differential equations
Exponential utility
G11, C70
Game theory
Games
Itô-Lévy processes
Markov analysis
Mathematical models
Model uncertainty
Portfolio management
Portfolio optimization
Stochastic differential games
Studies
title Portfolio optimization under model uncertainty and BSDE games
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portfolio%20optimization%20under%20model%20uncertainty%20and%20BSDE%20games&rft.jtitle=Quantitative%20finance&rft.au=%C3%98ksendal,%20Bernt&rft.date=2011-11&rft.volume=11&rft.issue=11&rft.spage=1665&rft.epage=1674&rft.pages=1665-1674&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2011.615219&rft_dat=%3Cproquest_cross%3E2495081291%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-b7cf4523272a122a1a97daac709a23bc1bafc5da0ed993e67b9c9dd51c73b0c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=900531072&rft_id=info:pmid/&rfr_iscdi=true