Loading…

Effects of testosterone on synaptic plasticity mediated by androgen receptors in male SAMP8 mice

Synaptic changes are closely associated with cognitive deficits. In addition, testosterone (T) is known to exert regulative effects on synaptic plasticity. T may improve cognitive deficits in Alzheimer's disease (AD) patients, but the underlying mechanisms of androgenic action on cognitive perf...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Toxicology and Environmental Health, Part A Part A, 2016-01, Vol.79 (19), p.849-855
Main Authors: Jia, Jian-xin, Cui, Cheng-li, Yan, Xu-sheng, Zhang, Bai-feng, Song, Wei, Huo, Dong-sheng, Wang, He, Yang, Zhan-jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synaptic changes are closely associated with cognitive deficits. In addition, testosterone (T) is known to exert regulative effects on synaptic plasticity. T may improve cognitive deficits in Alzheimer's disease (AD) patients, but the underlying mechanisms of androgenic action on cognitive performance remain unclear. The aim of this study was thus to examine the protective mechanism attributed to T on cognitive performance in an AD senescence, accelerated mouse prone 8 (SAMP8) animal model. Using Golgi staining to quantify the dendritic spine density in hippocampal CA1 region, molecular biomarkers of synapse function were analyzed using immunohistochemistry and western blot. T significantly increased the dendritic spine density in hippocampal CA1 region, while flutamide (F) inhibited these T-mediated effects. Immunohistochemistry and western blot analysis showed that the expression levels of brain derived neurotrophic factor (BDNF), postsynaptic density 95 (PSD-95), and p-cyclic-AMP response element binding protein (CREB)/CREB levels were significantly elevated in the T group, but F reduced the T-induced effects in these biomarkers to control levels. There were no significant differences in the expression levels of PSD-95, BDNF, and p-CREB/CREB between C and F. These findings indicate that the effects of T on improvement in synaptic plasticity were mediated via androgen receptor (AR). It is conceivable that new treatments targeted toward preventing synaptic pathology in AD may involve the use of androgen-acting drugs.
ISSN:1528-7394
1087-2620
2381-3504
DOI:10.1080/15287394.2016.1193113