Loading…

Effects of Silver Nanoparticles on Soil Enzyme Activity of Different Wetland Plant Soil Systems

In the present study, five soil exoenzymes (dehydrogenase, urease, acid phosphatase, neutral phosphatase, and alkaline phosphatase) were investigated in rhizosphere of wetland plants (Iris wilsonii, Arundo donax, and Typha orientalis) treated with silver nanoparticles (0, 0.024, 0.24, 4.80, and 9.60...

Full description

Saved in:
Bibliographic Details
Published in:Soil & sediment contamination 2017-07, Vol.26 (5), p.558-567
Main Authors: Cao, Chong, Huang, Juan, Cai, Wen-Shu, Yan, Chun-Ni, Liu, Jia-Liang, Jiang, Yao-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, five soil exoenzymes (dehydrogenase, urease, acid phosphatase, neutral phosphatase, and alkaline phosphatase) were investigated in rhizosphere of wetland plants (Iris wilsonii, Arundo donax, and Typha orientalis) treated with silver nanoparticles (0, 0.024, 0.24, 4.80, and 9.60 μg/g dry soil). It was found that Ag NPs were capable of inhibiting all exoenzyme activities tested in this study, with inhibitory effects especially obvious to higher Ag NPs level (4.80 and 9.60 μg/g dry soil). However, for lower Ag NPs concentration (0.024 μg/g dry soil), the adverse effects on exoenzymes was only found in T. orientalis rhizosphere, the exoenzyme activities in rhizosphere of I. wilsonii were less affected. This study suggested that high concentration Ag NPs could negatively affect all soil exoenzyme activities, while the impacts of low Ag NPs level on exoenzyme activities were mainly related to plant species.
ISSN:1532-0383
1549-7887
DOI:10.1080/15320383.2017.1363158