Loading…

Accounting for Response Styles: Leveraging the Benefits of Combining Response Process Data Collection and Response Process Analysis Methods

Response styles introduce construct-irrelevant variance as a result of respondents systematically responding to Likert-type items regardless of content. Methods to account for response styles through data analysis as well as approaches to mitigating the effects of response styles during data collect...

Full description

Saved in:
Bibliographic Details
Published in:Measurement (Mahwah, N.J.) N.J.), 2022-07, Vol.20 (3), p.151-174
Main Authors: Leventhal, Brian C, Gregg, Nikole, Ames, Allison J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c262t-69219421a32f4b7b58b9fbf99718ed0779e96f900027378816b91f129d6a093b3
cites cdi_FETCH-LOGICAL-c262t-69219421a32f4b7b58b9fbf99718ed0779e96f900027378816b91f129d6a093b3
container_end_page 174
container_issue 3
container_start_page 151
container_title Measurement (Mahwah, N.J.)
container_volume 20
creator Leventhal, Brian C
Gregg, Nikole
Ames, Allison J.
description Response styles introduce construct-irrelevant variance as a result of respondents systematically responding to Likert-type items regardless of content. Methods to account for response styles through data analysis as well as approaches to mitigating the effects of response styles during data collection have been well-documented. Recent approaches to modeling Likert responses, such as the IRTree model, rely on the response process individuals take when answering item responses. In this study, we advocate for the use of IRTrees to analyze Likert items in addition to using the hypothesized response process to design new items. Combining these two approaches facilitates answering Likert item design questions that have plagued researchers. These include the interpretation of a middle response option, the optimal number of response options, and how to label the response options. We present 7 research questions that could be answered using this new approach, outline methods of data collection and analysis for each, and present results from an empirical example to address one of these seven questions.
doi_str_mv 10.1080/15366367.2021.1953315
format article
fullrecord <record><control><sourceid>eric_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15366367_2021_1953315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1359704</ericid><sourcerecordid>EJ1359704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-69219421a32f4b7b58b9fbf99718ed0779e96f900027378816b91f129d6a093b3</originalsourceid><addsrcrecordid>eNp9kN1OwyAYhonRxDm9hCXcQCc_KxSPnHP-ZUbjzzGhLWyYDgygptfgTdtmcycmHn3ke94XwgPACKMxRgU6xTlljDI-JojgMRY5pTjfA4N-nzGai_3dmfFDcBTjG-qSOUED8D2tKv_hknVLaHyATzq-exc1fE5to-MZXOhPHdSy52ml4YV22tgUoTdw5teldT3ZtR6Dr3SM8FIl1fGm0VWy3kHl6r-hqVNNG22E9zqtfB2PwYFRTdQn2zkEr1fzl9lNtni4vp1NF1lFGEkZEwSLCcGKEjMpeZkXpTClEYLjQteIc6EFMwJ1f-SUFwVmpcAGE1EzhQQt6RDkm3ur4GMM2sj3YNcqtBIj2RuVv0Zlb1RujXa90aang612nfkd7hRzNOn4-YZb16lcqy8fmlom1TY-mKBcZaOk_z_xA1tdiAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accounting for Response Styles: Leveraging the Benefits of Combining Response Process Data Collection and Response Process Analysis Methods</title><source>ERIC</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Leventhal, Brian C ; Gregg, Nikole ; Ames, Allison J.</creator><creatorcontrib>Leventhal, Brian C ; Gregg, Nikole ; Ames, Allison J.</creatorcontrib><description>Response styles introduce construct-irrelevant variance as a result of respondents systematically responding to Likert-type items regardless of content. Methods to account for response styles through data analysis as well as approaches to mitigating the effects of response styles during data collection have been well-documented. Recent approaches to modeling Likert responses, such as the IRTree model, rely on the response process individuals take when answering item responses. In this study, we advocate for the use of IRTrees to analyze Likert items in addition to using the hypothesized response process to design new items. Combining these two approaches facilitates answering Likert item design questions that have plagued researchers. These include the interpretation of a middle response option, the optimal number of response options, and how to label the response options. We present 7 research questions that could be answered using this new approach, outline methods of data collection and analysis for each, and present results from an empirical example to address one of these seven questions.</description><identifier>ISSN: 1536-6367</identifier><identifier>EISSN: 1536-6359</identifier><identifier>DOI: 10.1080/15366367.2021.1953315</identifier><language>eng</language><publisher>Routledge</publisher><subject>Data Analysis ; Data Collection ; irtrees ; Item Response Theory ; Likert Scales ; Response process models ; Response Style (Tests) ; response styles ; Test Construction ; Test Interpretation ; Test Items</subject><ispartof>Measurement (Mahwah, N.J.), 2022-07, Vol.20 (3), p.151-174</ispartof><rights>2021 Taylor &amp; Francis Group, LLC 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-69219421a32f4b7b58b9fbf99718ed0779e96f900027378816b91f129d6a093b3</citedby><cites>FETCH-LOGICAL-c262t-69219421a32f4b7b58b9fbf99718ed0779e96f900027378816b91f129d6a093b3</cites><orcidid>0000-0002-6480-2016 ; 0000-0002-1512-9830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1359704$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Leventhal, Brian C</creatorcontrib><creatorcontrib>Gregg, Nikole</creatorcontrib><creatorcontrib>Ames, Allison J.</creatorcontrib><title>Accounting for Response Styles: Leveraging the Benefits of Combining Response Process Data Collection and Response Process Analysis Methods</title><title>Measurement (Mahwah, N.J.)</title><description>Response styles introduce construct-irrelevant variance as a result of respondents systematically responding to Likert-type items regardless of content. Methods to account for response styles through data analysis as well as approaches to mitigating the effects of response styles during data collection have been well-documented. Recent approaches to modeling Likert responses, such as the IRTree model, rely on the response process individuals take when answering item responses. In this study, we advocate for the use of IRTrees to analyze Likert items in addition to using the hypothesized response process to design new items. Combining these two approaches facilitates answering Likert item design questions that have plagued researchers. These include the interpretation of a middle response option, the optimal number of response options, and how to label the response options. We present 7 research questions that could be answered using this new approach, outline methods of data collection and analysis for each, and present results from an empirical example to address one of these seven questions.</description><subject>Data Analysis</subject><subject>Data Collection</subject><subject>irtrees</subject><subject>Item Response Theory</subject><subject>Likert Scales</subject><subject>Response process models</subject><subject>Response Style (Tests)</subject><subject>response styles</subject><subject>Test Construction</subject><subject>Test Interpretation</subject><subject>Test Items</subject><issn>1536-6367</issn><issn>1536-6359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNp9kN1OwyAYhonRxDm9hCXcQCc_KxSPnHP-ZUbjzzGhLWyYDgygptfgTdtmcycmHn3ke94XwgPACKMxRgU6xTlljDI-JojgMRY5pTjfA4N-nzGai_3dmfFDcBTjG-qSOUED8D2tKv_hknVLaHyATzq-exc1fE5to-MZXOhPHdSy52ml4YV22tgUoTdw5teldT3ZtR6Dr3SM8FIl1fGm0VWy3kHl6r-hqVNNG22E9zqtfB2PwYFRTdQn2zkEr1fzl9lNtni4vp1NF1lFGEkZEwSLCcGKEjMpeZkXpTClEYLjQteIc6EFMwJ1f-SUFwVmpcAGE1EzhQQt6RDkm3ur4GMM2sj3YNcqtBIj2RuVv0Zlb1RujXa90aang612nfkd7hRzNOn4-YZb16lcqy8fmlom1TY-mKBcZaOk_z_xA1tdiAg</recordid><startdate>20220703</startdate><enddate>20220703</enddate><creator>Leventhal, Brian C</creator><creator>Gregg, Nikole</creator><creator>Ames, Allison J.</creator><general>Routledge</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6480-2016</orcidid><orcidid>https://orcid.org/0000-0002-1512-9830</orcidid></search><sort><creationdate>20220703</creationdate><title>Accounting for Response Styles: Leveraging the Benefits of Combining Response Process Data Collection and Response Process Analysis Methods</title><author>Leventhal, Brian C ; Gregg, Nikole ; Ames, Allison J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-69219421a32f4b7b58b9fbf99718ed0779e96f900027378816b91f129d6a093b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data Analysis</topic><topic>Data Collection</topic><topic>irtrees</topic><topic>Item Response Theory</topic><topic>Likert Scales</topic><topic>Response process models</topic><topic>Response Style (Tests)</topic><topic>response styles</topic><topic>Test Construction</topic><topic>Test Interpretation</topic><topic>Test Items</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leventhal, Brian C</creatorcontrib><creatorcontrib>Gregg, Nikole</creatorcontrib><creatorcontrib>Ames, Allison J.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Measurement (Mahwah, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leventhal, Brian C</au><au>Gregg, Nikole</au><au>Ames, Allison J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1359704</ericid><atitle>Accounting for Response Styles: Leveraging the Benefits of Combining Response Process Data Collection and Response Process Analysis Methods</atitle><jtitle>Measurement (Mahwah, N.J.)</jtitle><date>2022-07-03</date><risdate>2022</risdate><volume>20</volume><issue>3</issue><spage>151</spage><epage>174</epage><pages>151-174</pages><issn>1536-6367</issn><eissn>1536-6359</eissn><abstract>Response styles introduce construct-irrelevant variance as a result of respondents systematically responding to Likert-type items regardless of content. Methods to account for response styles through data analysis as well as approaches to mitigating the effects of response styles during data collection have been well-documented. Recent approaches to modeling Likert responses, such as the IRTree model, rely on the response process individuals take when answering item responses. In this study, we advocate for the use of IRTrees to analyze Likert items in addition to using the hypothesized response process to design new items. Combining these two approaches facilitates answering Likert item design questions that have plagued researchers. These include the interpretation of a middle response option, the optimal number of response options, and how to label the response options. We present 7 research questions that could be answered using this new approach, outline methods of data collection and analysis for each, and present results from an empirical example to address one of these seven questions.</abstract><pub>Routledge</pub><doi>10.1080/15366367.2021.1953315</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-6480-2016</orcidid><orcidid>https://orcid.org/0000-0002-1512-9830</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-6367
ispartof Measurement (Mahwah, N.J.), 2022-07, Vol.20 (3), p.151-174
issn 1536-6367
1536-6359
language eng
recordid cdi_crossref_primary_10_1080_15366367_2021_1953315
source ERIC; Taylor and Francis Social Sciences and Humanities Collection
subjects Data Analysis
Data Collection
irtrees
Item Response Theory
Likert Scales
Response process models
Response Style (Tests)
response styles
Test Construction
Test Interpretation
Test Items
title Accounting for Response Styles: Leveraging the Benefits of Combining Response Process Data Collection and Response Process Analysis Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A19%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20Response%20Styles:%20Leveraging%20the%20Benefits%20of%20Combining%20Response%20Process%20Data%20Collection%20and%20Response%20Process%20Analysis%20Methods&rft.jtitle=Measurement%20(Mahwah,%20N.J.)&rft.au=Leventhal,%20Brian%20C&rft.date=2022-07-03&rft.volume=20&rft.issue=3&rft.spage=151&rft.epage=174&rft.pages=151-174&rft.issn=1536-6367&rft.eissn=1536-6359&rft_id=info:doi/10.1080/15366367.2021.1953315&rft_dat=%3Ceric_cross%3EEJ1359704%3C/eric_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262t-69219421a32f4b7b58b9fbf99718ed0779e96f900027378816b91f129d6a093b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ1359704&rfr_iscdi=true