Loading…

Performances analysis of heterojunction solar cells through integration of hydrogenated nanocrystalline silicon bilayer by using numerical study

This study was conducted to simulate a pin-type thin film solar cell by integrating nc-Si:H as p-window and buffer layers. The structures proposed to investigated are ITO/(p)nc-Si:H/((i)a-Si:H/(n)a-Si:H/Ag and ITO/(p)nc-Si:H/(p')nc-Si:H(buff)/(i)a-Si:H/(n)a-Si:H/Ag simulated with the AFORS-HET...

Full description

Saved in:
Bibliographic Details
Published in:Molecular Crystals and Liquid Crystals 2021-08, Vol.725 (1), p.91-110, Article 91
Main Authors: Hamdani, Dadan, Cahyono, Yoyok, Yudoyono, Gatut, Darminto, Darminto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-e8bc2452c8560f1c496c1a8121d893e5acc0caa141b8ff4bc7529928b15d82783
cites cdi_FETCH-LOGICAL-c338t-e8bc2452c8560f1c496c1a8121d893e5acc0caa141b8ff4bc7529928b15d82783
container_end_page 110
container_issue 1
container_start_page 91
container_title Molecular Crystals and Liquid Crystals
container_volume 725
creator Hamdani, Dadan
Cahyono, Yoyok
Yudoyono, Gatut
Darminto, Darminto
description This study was conducted to simulate a pin-type thin film solar cell by integrating nc-Si:H as p-window and buffer layers. The structures proposed to investigated are ITO/(p)nc-Si:H/((i)a-Si:H/(n)a-Si:H/Ag and ITO/(p)nc-Si:H/(p')nc-Si:H(buff)/(i)a-Si:H/(n)a-Si:H/Ag simulated with the AFORS-HET simulator. In an effort to improve the electrical and optical properties of the heterojunction solar cell, the dopant concentration for the p-window and n-layers, the absorber bandgap, and the absorber thickness were optimized. The result showed that the E ff of p-p'-i-n is 9.60% (V OC = 936.6 mV, J SC = 13.86 mA/cm 2 , FF = 0.738) were obtained when values of Na, Nd, absorber bandgap, and absorber thickness parameters are 1.0 x 10 17 particles/cm 3 , 1.0 x 10 19 particles/cm 3 , 1.80 eV, and 600 nm, respectively.
doi_str_mv 10.1080/15421406.2021.1922226
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15421406_2021_1922226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614935098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-e8bc2452c8560f1c496c1a8121d893e5acc0caa141b8ff4bc7529928b15d82783</originalsourceid><addsrcrecordid>eNqFkc9q3DAQh01poWmSRwgIevZWI0temV5aQv9BoD2kZzGW5V0tWikdyRS_RR-59m566SGZiwb0-wbmm6q6Ab4Brvk7UFKA5O1GcAEb6MRS7YvqAlTb1Ero7cu1l6JeQ6-rNzkfOBdyC_qi-vPD0ZjoiNG6zDBimLPPLI1s74qjdJiiLT5FllNAYtaFkFnZU5p2e-ZjcTvC0_9KzAOlnYtY3MAixmRpzgVD8NGx7IO3S673AWdHrJ_ZlH3csTgdHXmLgeUyDfNV9WrEkN3143tZ_fz86f72a333_cu32493tW0aXWqneyukElarlo9gZddaQA0CBt01TqG13CKChF6Po-ztVomuE7oHNWix1c1l9fY894HSr8nlYg5pomX_bEQLsmsU79aUOqcspZzJjeaB_BFpNsDNKt_8k29W-eZR_sK9_4-zvpxEFUIfnqU_nGkfT7f5nSgMpuAcEo20nMpn0zw94i9EnqGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614935098</pqid></control><display><type>article</type><title>Performances analysis of heterojunction solar cells through integration of hydrogenated nanocrystalline silicon bilayer by using numerical study</title><source>Taylor and Francis Science and Technology Collection</source><source>MLA International Bibliography with Full Text</source><creator>Hamdani, Dadan ; Cahyono, Yoyok ; Yudoyono, Gatut ; Darminto, Darminto</creator><creatorcontrib>Hamdani, Dadan ; Cahyono, Yoyok ; Yudoyono, Gatut ; Darminto, Darminto</creatorcontrib><description>This study was conducted to simulate a pin-type thin film solar cell by integrating nc-Si:H as p-window and buffer layers. The structures proposed to investigated are ITO/(p)nc-Si:H/((i)a-Si:H/(n)a-Si:H/Ag and ITO/(p)nc-Si:H/(p')nc-Si:H(buff)/(i)a-Si:H/(n)a-Si:H/Ag simulated with the AFORS-HET simulator. In an effort to improve the electrical and optical properties of the heterojunction solar cell, the dopant concentration for the p-window and n-layers, the absorber bandgap, and the absorber thickness were optimized. The result showed that the E ff of p-p'-i-n is 9.60% (V OC = 936.6 mV, J SC = 13.86 mA/cm 2 , FF = 0.738) were obtained when values of Na, Nd, absorber bandgap, and absorber thickness parameters are 1.0 x 10 17 particles/cm 3 , 1.0 x 10 19 particles/cm 3 , 1.80 eV, and 600 nm, respectively.</description><identifier>ISSN: 1542-1406</identifier><identifier>ISSN: 1563-5287</identifier><identifier>EISSN: 1563-5287</identifier><identifier>EISSN: 1527-1943</identifier><identifier>DOI: 10.1080/15421406.2021.1922226</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Absorbers ; AFORS-HET ; Bilayers ; buffer layer ; Buffer layers ; Energy gap ; Heterojunctions ; nc-Si:H ; Optical properties ; p/i interface ; Photovoltaic cells ; Silicon ; Simulation ; Solar cells ; Thickness ; thin film solar cells ; Thin films</subject><ispartof>Molecular Crystals and Liquid Crystals, 2021-08, Vol.725 (1), p.91-110, Article 91</ispartof><rights>2021 Taylor &amp; Francis Group, LLC 2021</rights><rights>2021 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-e8bc2452c8560f1c496c1a8121d893e5acc0caa141b8ff4bc7529928b15d82783</citedby><cites>FETCH-LOGICAL-c338t-e8bc2452c8560f1c496c1a8121d893e5acc0caa141b8ff4bc7529928b15d82783</cites><orcidid>0000-0002-6269-9246 ; 0000-0003-1115-1560 ; 0000-0002-5370-0559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hamdani, Dadan</creatorcontrib><creatorcontrib>Cahyono, Yoyok</creatorcontrib><creatorcontrib>Yudoyono, Gatut</creatorcontrib><creatorcontrib>Darminto, Darminto</creatorcontrib><title>Performances analysis of heterojunction solar cells through integration of hydrogenated nanocrystalline silicon bilayer by using numerical study</title><title>Molecular Crystals and Liquid Crystals</title><description>This study was conducted to simulate a pin-type thin film solar cell by integrating nc-Si:H as p-window and buffer layers. The structures proposed to investigated are ITO/(p)nc-Si:H/((i)a-Si:H/(n)a-Si:H/Ag and ITO/(p)nc-Si:H/(p')nc-Si:H(buff)/(i)a-Si:H/(n)a-Si:H/Ag simulated with the AFORS-HET simulator. In an effort to improve the electrical and optical properties of the heterojunction solar cell, the dopant concentration for the p-window and n-layers, the absorber bandgap, and the absorber thickness were optimized. The result showed that the E ff of p-p'-i-n is 9.60% (V OC = 936.6 mV, J SC = 13.86 mA/cm 2 , FF = 0.738) were obtained when values of Na, Nd, absorber bandgap, and absorber thickness parameters are 1.0 x 10 17 particles/cm 3 , 1.0 x 10 19 particles/cm 3 , 1.80 eV, and 600 nm, respectively.</description><subject>Absorbers</subject><subject>AFORS-HET</subject><subject>Bilayers</subject><subject>buffer layer</subject><subject>Buffer layers</subject><subject>Energy gap</subject><subject>Heterojunctions</subject><subject>nc-Si:H</subject><subject>Optical properties</subject><subject>p/i interface</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>thin film solar cells</subject><subject>Thin films</subject><issn>1542-1406</issn><issn>1563-5287</issn><issn>1563-5287</issn><issn>1527-1943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc9q3DAQh01poWmSRwgIevZWI0temV5aQv9BoD2kZzGW5V0tWikdyRS_RR-59m566SGZiwb0-wbmm6q6Ab4Brvk7UFKA5O1GcAEb6MRS7YvqAlTb1Ero7cu1l6JeQ6-rNzkfOBdyC_qi-vPD0ZjoiNG6zDBimLPPLI1s74qjdJiiLT5FllNAYtaFkFnZU5p2e-ZjcTvC0_9KzAOlnYtY3MAixmRpzgVD8NGx7IO3S673AWdHrJ_ZlH3csTgdHXmLgeUyDfNV9WrEkN3143tZ_fz86f72a333_cu32493tW0aXWqneyukElarlo9gZddaQA0CBt01TqG13CKChF6Po-ztVomuE7oHNWix1c1l9fY894HSr8nlYg5pomX_bEQLsmsU79aUOqcspZzJjeaB_BFpNsDNKt_8k29W-eZR_sK9_4-zvpxEFUIfnqU_nGkfT7f5nSgMpuAcEo20nMpn0zw94i9EnqGo</recordid><startdate>20210813</startdate><enddate>20210813</enddate><creator>Hamdani, Dadan</creator><creator>Cahyono, Yoyok</creator><creator>Yudoyono, Gatut</creator><creator>Darminto, Darminto</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6269-9246</orcidid><orcidid>https://orcid.org/0000-0003-1115-1560</orcidid><orcidid>https://orcid.org/0000-0002-5370-0559</orcidid></search><sort><creationdate>20210813</creationdate><title>Performances analysis of heterojunction solar cells through integration of hydrogenated nanocrystalline silicon bilayer by using numerical study</title><author>Hamdani, Dadan ; Cahyono, Yoyok ; Yudoyono, Gatut ; Darminto, Darminto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-e8bc2452c8560f1c496c1a8121d893e5acc0caa141b8ff4bc7529928b15d82783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorbers</topic><topic>AFORS-HET</topic><topic>Bilayers</topic><topic>buffer layer</topic><topic>Buffer layers</topic><topic>Energy gap</topic><topic>Heterojunctions</topic><topic>nc-Si:H</topic><topic>Optical properties</topic><topic>p/i interface</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>thin film solar cells</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamdani, Dadan</creatorcontrib><creatorcontrib>Cahyono, Yoyok</creatorcontrib><creatorcontrib>Yudoyono, Gatut</creatorcontrib><creatorcontrib>Darminto, Darminto</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Molecular Crystals and Liquid Crystals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamdani, Dadan</au><au>Cahyono, Yoyok</au><au>Yudoyono, Gatut</au><au>Darminto, Darminto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performances analysis of heterojunction solar cells through integration of hydrogenated nanocrystalline silicon bilayer by using numerical study</atitle><jtitle>Molecular Crystals and Liquid Crystals</jtitle><date>2021-08-13</date><risdate>2021</risdate><volume>725</volume><issue>1</issue><spage>91</spage><epage>110</epage><pages>91-110</pages><artnum>91</artnum><issn>1542-1406</issn><issn>1563-5287</issn><eissn>1563-5287</eissn><eissn>1527-1943</eissn><abstract>This study was conducted to simulate a pin-type thin film solar cell by integrating nc-Si:H as p-window and buffer layers. The structures proposed to investigated are ITO/(p)nc-Si:H/((i)a-Si:H/(n)a-Si:H/Ag and ITO/(p)nc-Si:H/(p')nc-Si:H(buff)/(i)a-Si:H/(n)a-Si:H/Ag simulated with the AFORS-HET simulator. In an effort to improve the electrical and optical properties of the heterojunction solar cell, the dopant concentration for the p-window and n-layers, the absorber bandgap, and the absorber thickness were optimized. The result showed that the E ff of p-p'-i-n is 9.60% (V OC = 936.6 mV, J SC = 13.86 mA/cm 2 , FF = 0.738) were obtained when values of Na, Nd, absorber bandgap, and absorber thickness parameters are 1.0 x 10 17 particles/cm 3 , 1.0 x 10 19 particles/cm 3 , 1.80 eV, and 600 nm, respectively.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/15421406.2021.1922226</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6269-9246</orcidid><orcidid>https://orcid.org/0000-0003-1115-1560</orcidid><orcidid>https://orcid.org/0000-0002-5370-0559</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1542-1406
ispartof Molecular Crystals and Liquid Crystals, 2021-08, Vol.725 (1), p.91-110, Article 91
issn 1542-1406
1563-5287
1563-5287
1527-1943
language eng
recordid cdi_crossref_primary_10_1080_15421406_2021_1922226
source Taylor and Francis Science and Technology Collection; MLA International Bibliography with Full Text
subjects Absorbers
AFORS-HET
Bilayers
buffer layer
Buffer layers
Energy gap
Heterojunctions
nc-Si:H
Optical properties
p/i interface
Photovoltaic cells
Silicon
Simulation
Solar cells
Thickness
thin film solar cells
Thin films
title Performances analysis of heterojunction solar cells through integration of hydrogenated nanocrystalline silicon bilayer by using numerical study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performances%20analysis%20of%20heterojunction%20solar%20cells%20through%20integration%20of%20hydrogenated%20nanocrystalline%20silicon%20bilayer%20by%20using%20numerical%20study&rft.jtitle=Molecular%20Crystals%20and%20Liquid%20Crystals&rft.au=Hamdani,%20Dadan&rft.date=2021-08-13&rft.volume=725&rft.issue=1&rft.spage=91&rft.epage=110&rft.pages=91-110&rft.artnum=91&rft.issn=1542-1406&rft.eissn=1563-5287&rft_id=info:doi/10.1080/15421406.2021.1922226&rft_dat=%3Cproquest_cross%3E2614935098%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-e8bc2452c8560f1c496c1a8121d893e5acc0caa141b8ff4bc7529928b15d82783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2614935098&rft_id=info:pmid/&rfr_iscdi=true