Loading…

Mode II Interlaminar Fracture Toughness of Flax/Glass/Epoxy Hybrid Composite Materials: An Experimental and Numerical Study

The mode II interlaminar fracture toughness characteristics of flax/glass/epoxy hybrid laminates were experimentally and numerically examined. Three types of hybrid composites that are made of flax (F) and glass (G) and with different layup sequences (i.e., Hybrid I [0  G /0  F ] 8S , Hybrid II [0 4...

Full description

Saved in:
Bibliographic Details
Published in:Journal of natural fibers 2022-11, Vol.19 (11), p.4286-4300
Main Authors: Ekeoseye, Wilfred Stephen, Kolasangiani, Kamal, Oguamanam, Donatus C.D., Bougherara, Habiba
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-2b8bc10da12388524ee8303f4265b7d5100237cdf46a24d4d89d07d7e8c5fb693
cites cdi_FETCH-LOGICAL-c404t-2b8bc10da12388524ee8303f4265b7d5100237cdf46a24d4d89d07d7e8c5fb693
container_end_page 4300
container_issue 11
container_start_page 4286
container_title Journal of natural fibers
container_volume 19
creator Ekeoseye, Wilfred Stephen
Kolasangiani, Kamal
Oguamanam, Donatus C.D.
Bougherara, Habiba
description The mode II interlaminar fracture toughness characteristics of flax/glass/epoxy hybrid laminates were experimentally and numerically examined. Three types of hybrid composites that are made of flax (F) and glass (G) and with different layup sequences (i.e., Hybrid I [0  G /0  F ] 8S , Hybrid II [0 4G /0 4F ] S , and Hybrid III [0 4G /(90/0) 2F ] S ) were investigated. The experimental results obtained from end notch flexural tests showed that both the mode II fracture toughness and flexural strength of Hybrid I composites were higher than those for Hybrid II & III composites. This was attributed to the presence of bridging in several interfaces of the flax plies and the glass plies in Hybrid I. A second delamination propagation between the flax/epoxy midplane plies was observed in Hybrid II and III and this helped to lower both the mode II fracture toughness and flexural strength. The finite element simulations employed the virtual crack closure technique and the cohesive zone model. The results showed that both methods successfully predicted mode II interlaminar fracture toughness characteristics of the Hybrid I composites, but significantly overpredicted the values for both Hybrid II & III due to the presence of a secondary delamination propagation.
doi_str_mv 10.1080/15440478.2020.1856277
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15440478_2020_1856277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_993078e31fac4229bf15aaed75a6d478</doaj_id><sourcerecordid>2719252049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-2b8bc10da12388524ee8303f4265b7d5100237cdf46a24d4d89d07d7e8c5fb693</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEqXlJyBZ4rxd27FjhxPVareN1NIDReJmTfxRskriYDtiI_58vd3SIyd7Xs088_EWxSeCLwmWeE04Y5gJeUkxzZLkFRXiTXF21FeYVT_fvv6FfF98iHGPMa05oWfF3ztvLGoa1IzJhh6GboSAdgF0moNFD35-_DXaGJF3aNfDYX3dQ4zr7eQPC7pZ2tAZtPHD5GOXLLqDDOmgj1_Q1Yi2hylHgx0T9AhGg77NQxZ0jr6n2SwXxTuXc-3Hl_e8-LHbPmxuVrf3183m6nal81ppRVvZaoINEFpKySmzVpa4dIxWvBWGk7xMKbRxrALKDDOyNlgYYaXmrq3q8rxoTlzjYa-mPBKERXno1LPgw6OCkDrdW1XXJRbSlsSBZpTWrSMcwBrBoTL5epn1-cSagv8925jU3s9hzOMrKkhNOcXs2JGfsnTwMQbrXrsSrI6eqX-eqaNn6sWzXPf1VNeNzocB_vjQG5Vg6X1wAUbdRVX-H_EEmqGdhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719252049</pqid></control><display><type>article</type><title>Mode II Interlaminar Fracture Toughness of Flax/Glass/Epoxy Hybrid Composite Materials: An Experimental and Numerical Study</title><source>Taylor and Francis Science and Technology Collection</source><creator>Ekeoseye, Wilfred Stephen ; Kolasangiani, Kamal ; Oguamanam, Donatus C.D. ; Bougherara, Habiba</creator><creatorcontrib>Ekeoseye, Wilfred Stephen ; Kolasangiani, Kamal ; Oguamanam, Donatus C.D. ; Bougherara, Habiba</creatorcontrib><description>The mode II interlaminar fracture toughness characteristics of flax/glass/epoxy hybrid laminates were experimentally and numerically examined. Three types of hybrid composites that are made of flax (F) and glass (G) and with different layup sequences (i.e., Hybrid I [0  G /0  F ] 8S , Hybrid II [0 4G /0 4F ] S , and Hybrid III [0 4G /(90/0) 2F ] S ) were investigated. The experimental results obtained from end notch flexural tests showed that both the mode II fracture toughness and flexural strength of Hybrid I composites were higher than those for Hybrid II &amp; III composites. This was attributed to the presence of bridging in several interfaces of the flax plies and the glass plies in Hybrid I. A second delamination propagation between the flax/epoxy midplane plies was observed in Hybrid II and III and this helped to lower both the mode II fracture toughness and flexural strength. The finite element simulations employed the virtual crack closure technique and the cohesive zone model. The results showed that both methods successfully predicted mode II interlaminar fracture toughness characteristics of the Hybrid I composites, but significantly overpredicted the values for both Hybrid II &amp; III due to the presence of a secondary delamination propagation.</description><identifier>ISSN: 1544-0478</identifier><identifier>EISSN: 1544-046X</identifier><identifier>DOI: 10.1080/15440478.2020.1856277</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>cohesive zone model ; Composite materials ; Crack closure ; Delamination ; ENF test ; Flax ; Flax/glass/epoxy hybrid composite ; Flexural strength ; Fracture toughness ; Heat treating ; Hybrid composites ; II型层间断裂韧性 ; Interfaces ; Laminates ; Layers ; mode II interlaminar fracture toughness ; Propagation ; virtual crack closure technique ; 分层 ; 测试 ; 环氧/亚麻复合玻璃 ; 粘性带模型 ; 虚拟裂缝闭合技术</subject><ispartof>Journal of natural fibers, 2022-11, Vol.19 (11), p.4286-4300</ispartof><rights>2020 Taylor &amp; Francis 2020</rights><rights>2020 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-2b8bc10da12388524ee8303f4265b7d5100237cdf46a24d4d89d07d7e8c5fb693</citedby><cites>FETCH-LOGICAL-c404t-2b8bc10da12388524ee8303f4265b7d5100237cdf46a24d4d89d07d7e8c5fb693</cites><orcidid>0000-0001-6678-570X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ekeoseye, Wilfred Stephen</creatorcontrib><creatorcontrib>Kolasangiani, Kamal</creatorcontrib><creatorcontrib>Oguamanam, Donatus C.D.</creatorcontrib><creatorcontrib>Bougherara, Habiba</creatorcontrib><title>Mode II Interlaminar Fracture Toughness of Flax/Glass/Epoxy Hybrid Composite Materials: An Experimental and Numerical Study</title><title>Journal of natural fibers</title><description>The mode II interlaminar fracture toughness characteristics of flax/glass/epoxy hybrid laminates were experimentally and numerically examined. Three types of hybrid composites that are made of flax (F) and glass (G) and with different layup sequences (i.e., Hybrid I [0  G /0  F ] 8S , Hybrid II [0 4G /0 4F ] S , and Hybrid III [0 4G /(90/0) 2F ] S ) were investigated. The experimental results obtained from end notch flexural tests showed that both the mode II fracture toughness and flexural strength of Hybrid I composites were higher than those for Hybrid II &amp; III composites. This was attributed to the presence of bridging in several interfaces of the flax plies and the glass plies in Hybrid I. A second delamination propagation between the flax/epoxy midplane plies was observed in Hybrid II and III and this helped to lower both the mode II fracture toughness and flexural strength. The finite element simulations employed the virtual crack closure technique and the cohesive zone model. The results showed that both methods successfully predicted mode II interlaminar fracture toughness characteristics of the Hybrid I composites, but significantly overpredicted the values for both Hybrid II &amp; III due to the presence of a secondary delamination propagation.</description><subject>cohesive zone model</subject><subject>Composite materials</subject><subject>Crack closure</subject><subject>Delamination</subject><subject>ENF test</subject><subject>Flax</subject><subject>Flax/glass/epoxy hybrid composite</subject><subject>Flexural strength</subject><subject>Fracture toughness</subject><subject>Heat treating</subject><subject>Hybrid composites</subject><subject>II型层间断裂韧性</subject><subject>Interfaces</subject><subject>Laminates</subject><subject>Layers</subject><subject>mode II interlaminar fracture toughness</subject><subject>Propagation</subject><subject>virtual crack closure technique</subject><subject>分层</subject><subject>测试</subject><subject>环氧/亚麻复合玻璃</subject><subject>粘性带模型</subject><subject>虚拟裂缝闭合技术</subject><issn>1544-0478</issn><issn>1544-046X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEEqXlJyBZ4rxd27FjhxPVareN1NIDReJmTfxRskriYDtiI_58vd3SIyd7Xs088_EWxSeCLwmWeE04Y5gJeUkxzZLkFRXiTXF21FeYVT_fvv6FfF98iHGPMa05oWfF3ztvLGoa1IzJhh6GboSAdgF0moNFD35-_DXaGJF3aNfDYX3dQ4zr7eQPC7pZ2tAZtPHD5GOXLLqDDOmgj1_Q1Yi2hylHgx0T9AhGg77NQxZ0jr6n2SwXxTuXc-3Hl_e8-LHbPmxuVrf3183m6nal81ppRVvZaoINEFpKySmzVpa4dIxWvBWGk7xMKbRxrALKDDOyNlgYYaXmrq3q8rxoTlzjYa-mPBKERXno1LPgw6OCkDrdW1XXJRbSlsSBZpTWrSMcwBrBoTL5epn1-cSagv8925jU3s9hzOMrKkhNOcXs2JGfsnTwMQbrXrsSrI6eqX-eqaNn6sWzXPf1VNeNzocB_vjQG5Vg6X1wAUbdRVX-H_EEmqGdhA</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Ekeoseye, Wilfred Stephen</creator><creator>Kolasangiani, Kamal</creator><creator>Oguamanam, Donatus C.D.</creator><creator>Bougherara, Habiba</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6678-570X</orcidid></search><sort><creationdate>20221102</creationdate><title>Mode II Interlaminar Fracture Toughness of Flax/Glass/Epoxy Hybrid Composite Materials: An Experimental and Numerical Study</title><author>Ekeoseye, Wilfred Stephen ; Kolasangiani, Kamal ; Oguamanam, Donatus C.D. ; Bougherara, Habiba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-2b8bc10da12388524ee8303f4265b7d5100237cdf46a24d4d89d07d7e8c5fb693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>cohesive zone model</topic><topic>Composite materials</topic><topic>Crack closure</topic><topic>Delamination</topic><topic>ENF test</topic><topic>Flax</topic><topic>Flax/glass/epoxy hybrid composite</topic><topic>Flexural strength</topic><topic>Fracture toughness</topic><topic>Heat treating</topic><topic>Hybrid composites</topic><topic>II型层间断裂韧性</topic><topic>Interfaces</topic><topic>Laminates</topic><topic>Layers</topic><topic>mode II interlaminar fracture toughness</topic><topic>Propagation</topic><topic>virtual crack closure technique</topic><topic>分层</topic><topic>测试</topic><topic>环氧/亚麻复合玻璃</topic><topic>粘性带模型</topic><topic>虚拟裂缝闭合技术</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekeoseye, Wilfred Stephen</creatorcontrib><creatorcontrib>Kolasangiani, Kamal</creatorcontrib><creatorcontrib>Oguamanam, Donatus C.D.</creatorcontrib><creatorcontrib>Bougherara, Habiba</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of natural fibers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekeoseye, Wilfred Stephen</au><au>Kolasangiani, Kamal</au><au>Oguamanam, Donatus C.D.</au><au>Bougherara, Habiba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mode II Interlaminar Fracture Toughness of Flax/Glass/Epoxy Hybrid Composite Materials: An Experimental and Numerical Study</atitle><jtitle>Journal of natural fibers</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>19</volume><issue>11</issue><spage>4286</spage><epage>4300</epage><pages>4286-4300</pages><issn>1544-0478</issn><eissn>1544-046X</eissn><abstract>The mode II interlaminar fracture toughness characteristics of flax/glass/epoxy hybrid laminates were experimentally and numerically examined. Three types of hybrid composites that are made of flax (F) and glass (G) and with different layup sequences (i.e., Hybrid I [0  G /0  F ] 8S , Hybrid II [0 4G /0 4F ] S , and Hybrid III [0 4G /(90/0) 2F ] S ) were investigated. The experimental results obtained from end notch flexural tests showed that both the mode II fracture toughness and flexural strength of Hybrid I composites were higher than those for Hybrid II &amp; III composites. This was attributed to the presence of bridging in several interfaces of the flax plies and the glass plies in Hybrid I. A second delamination propagation between the flax/epoxy midplane plies was observed in Hybrid II and III and this helped to lower both the mode II fracture toughness and flexural strength. The finite element simulations employed the virtual crack closure technique and the cohesive zone model. The results showed that both methods successfully predicted mode II interlaminar fracture toughness characteristics of the Hybrid I composites, but significantly overpredicted the values for both Hybrid II &amp; III due to the presence of a secondary delamination propagation.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/15440478.2020.1856277</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6678-570X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1544-0478
ispartof Journal of natural fibers, 2022-11, Vol.19 (11), p.4286-4300
issn 1544-0478
1544-046X
language eng
recordid cdi_crossref_primary_10_1080_15440478_2020_1856277
source Taylor and Francis Science and Technology Collection
subjects cohesive zone model
Composite materials
Crack closure
Delamination
ENF test
Flax
Flax/glass/epoxy hybrid composite
Flexural strength
Fracture toughness
Heat treating
Hybrid composites
II型层间断裂韧性
Interfaces
Laminates
Layers
mode II interlaminar fracture toughness
Propagation
virtual crack closure technique
分层
测试
环氧/亚麻复合玻璃
粘性带模型
虚拟裂缝闭合技术
title Mode II Interlaminar Fracture Toughness of Flax/Glass/Epoxy Hybrid Composite Materials: An Experimental and Numerical Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mode%20II%20Interlaminar%20Fracture%20Toughness%20of%20Flax/Glass/Epoxy%20Hybrid%20Composite%20Materials:%20An%20Experimental%20and%20Numerical%20Study&rft.jtitle=Journal%20of%20natural%20fibers&rft.au=Ekeoseye,%20Wilfred%20Stephen&rft.date=2022-11-02&rft.volume=19&rft.issue=11&rft.spage=4286&rft.epage=4300&rft.pages=4286-4300&rft.issn=1544-0478&rft.eissn=1544-046X&rft_id=info:doi/10.1080/15440478.2020.1856277&rft_dat=%3Cproquest_cross%3E2719252049%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-2b8bc10da12388524ee8303f4265b7d5100237cdf46a24d4d89d07d7e8c5fb693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2719252049&rft_id=info:pmid/&rfr_iscdi=true