Loading…
Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes
Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Esch...
Saved in:
Published in: | RNA biology 2021-12, Vol.18 (12), p.2278-2289 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3 |
container_end_page | 2289 |
container_issue | 12 |
container_start_page | 2278 |
container_title | RNA biology |
container_volume | 18 |
creator | Faivre, Bruno Lombard, Murielle Fakroun, Soufyan Vo, Chau-Duy-Tam Goyenvalle, Catherine Guérineau, Vincent Pecqueur, Ludovic Fontecave, Marc De Crécy-Lagard, Valérie Brégeon, Damien Hamdane, Djemel |
description | Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusB
MCap
), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusB
MCap
modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property. |
doi_str_mv | 10.1080/15476286.2021.1899653 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15476286_2021_1899653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499385654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMozkN_glJLXVSbRyWVbMRmdByhVRBdh1RyY0fSyZhUtfS_t4ruGdSFq3u4-c65hIPQM4JXBEv8ivCuF1SKFcWUrIhUSnD2AJ0TznkrueweLrrr2wU6Qxe1_sCYCan4Y3TGZsGZEOdo8zZsD67kqQQXEjT1kMYt1FCbkJrxy6f1LGozJQelKeAmO4Y9NLDPcRpDTgv1MccY7DRCfYIeeRMrPD3NS_Tt-t3Xq5t28_n9h6v1prUc07FVHntlPQyCS3A99IP0PaFWOuuYlJLwAfpOiA6TXqreUOIGEIxgKw211rNL9PqYezsNO3AW0lhM1Lcl7Ew56GyC_vslha3-nvdaCkYJVXPAy2PA9h_bzXqjlx1mkvWE0z2Z2RenYyX_nKCOeheqhRhNgjxVTTulmOSCdzPKj6gtudYC_j6bYL20pu9a00tr-tTa7Hv-53_uXXc1zcCbIxCSz2VnfuUSnR7NIebii0k2VM3-f-M3YkGoLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499385654</pqid></control><display><type>article</type><title>Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes</title><source>PubMed Central</source><creator>Faivre, Bruno ; Lombard, Murielle ; Fakroun, Soufyan ; Vo, Chau-Duy-Tam ; Goyenvalle, Catherine ; Guérineau, Vincent ; Pecqueur, Ludovic ; Fontecave, Marc ; De Crécy-Lagard, Valérie ; Brégeon, Damien ; Hamdane, Djemel</creator><creatorcontrib>Faivre, Bruno ; Lombard, Murielle ; Fakroun, Soufyan ; Vo, Chau-Duy-Tam ; Goyenvalle, Catherine ; Guérineau, Vincent ; Pecqueur, Ludovic ; Fontecave, Marc ; De Crécy-Lagard, Valérie ; Brégeon, Damien ; Hamdane, Djemel</creatorcontrib><description>Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusB
MCap
), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusB
MCap
modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.</description><identifier>ISSN: 1547-6286</identifier><identifier>EISSN: 1555-8584</identifier><identifier>DOI: 10.1080/15476286.2021.1899653</identifier><identifier>PMID: 33685366</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biochemistry, Molecular Biology ; Cloning, Molecular ; dihydrouridine ; Escherichia coli - genetics ; Evolution, Molecular ; Life Sciences ; Models, Molecular ; mollicutes ; multisite-specificity ; Nucleic Acid Conformation ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; post-transcriptional modification ; Research Paper ; RNA, Bacterial - chemistry ; RNA, Transfer - chemistry ; Substrate Specificity ; Tenericutes - genetics ; Tenericutes - metabolism ; tRNA ; Uridine - metabolism</subject><ispartof>RNA biology, 2021-12, Vol.18 (12), p.2278-2289</ispartof><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3</citedby><cites>FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3</cites><orcidid>0000-0002-1747-5016 ; 0000-0002-8016-4747 ; 0000-0002-4775-3494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632129/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632129/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33685366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03837152$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Faivre, Bruno</creatorcontrib><creatorcontrib>Lombard, Murielle</creatorcontrib><creatorcontrib>Fakroun, Soufyan</creatorcontrib><creatorcontrib>Vo, Chau-Duy-Tam</creatorcontrib><creatorcontrib>Goyenvalle, Catherine</creatorcontrib><creatorcontrib>Guérineau, Vincent</creatorcontrib><creatorcontrib>Pecqueur, Ludovic</creatorcontrib><creatorcontrib>Fontecave, Marc</creatorcontrib><creatorcontrib>De Crécy-Lagard, Valérie</creatorcontrib><creatorcontrib>Brégeon, Damien</creatorcontrib><creatorcontrib>Hamdane, Djemel</creatorcontrib><title>Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes</title><title>RNA biology</title><addtitle>RNA Biol</addtitle><description>Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusB
MCap
), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusB
MCap
modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cloning, Molecular</subject><subject>dihydrouridine</subject><subject>Escherichia coli - genetics</subject><subject>Evolution, Molecular</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>mollicutes</subject><subject>multisite-specificity</subject><subject>Nucleic Acid Conformation</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>post-transcriptional modification</subject><subject>Research Paper</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Transfer - chemistry</subject><subject>Substrate Specificity</subject><subject>Tenericutes - genetics</subject><subject>Tenericutes - metabolism</subject><subject>tRNA</subject><subject>Uridine - metabolism</subject><issn>1547-6286</issn><issn>1555-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhYMozkN_glJLXVSbRyWVbMRmdByhVRBdh1RyY0fSyZhUtfS_t4ruGdSFq3u4-c65hIPQM4JXBEv8ivCuF1SKFcWUrIhUSnD2AJ0TznkrueweLrrr2wU6Qxe1_sCYCan4Y3TGZsGZEOdo8zZsD67kqQQXEjT1kMYt1FCbkJrxy6f1LGozJQelKeAmO4Y9NLDPcRpDTgv1MccY7DRCfYIeeRMrPD3NS_Tt-t3Xq5t28_n9h6v1prUc07FVHntlPQyCS3A99IP0PaFWOuuYlJLwAfpOiA6TXqreUOIGEIxgKw211rNL9PqYezsNO3AW0lhM1Lcl7Ew56GyC_vslha3-nvdaCkYJVXPAy2PA9h_bzXqjlx1mkvWE0z2Z2RenYyX_nKCOeheqhRhNgjxVTTulmOSCdzPKj6gtudYC_j6bYL20pu9a00tr-tTa7Hv-53_uXXc1zcCbIxCSz2VnfuUSnR7NIebii0k2VM3-f-M3YkGoLA</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Faivre, Bruno</creator><creator>Lombard, Murielle</creator><creator>Fakroun, Soufyan</creator><creator>Vo, Chau-Duy-Tam</creator><creator>Goyenvalle, Catherine</creator><creator>Guérineau, Vincent</creator><creator>Pecqueur, Ludovic</creator><creator>Fontecave, Marc</creator><creator>De Crécy-Lagard, Valérie</creator><creator>Brégeon, Damien</creator><creator>Hamdane, Djemel</creator><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1747-5016</orcidid><orcidid>https://orcid.org/0000-0002-8016-4747</orcidid><orcidid>https://orcid.org/0000-0002-4775-3494</orcidid></search><sort><creationdate>20211202</creationdate><title>Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes</title><author>Faivre, Bruno ; Lombard, Murielle ; Fakroun, Soufyan ; Vo, Chau-Duy-Tam ; Goyenvalle, Catherine ; Guérineau, Vincent ; Pecqueur, Ludovic ; Fontecave, Marc ; De Crécy-Lagard, Valérie ; Brégeon, Damien ; Hamdane, Djemel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cloning, Molecular</topic><topic>dihydrouridine</topic><topic>Escherichia coli - genetics</topic><topic>Evolution, Molecular</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>mollicutes</topic><topic>multisite-specificity</topic><topic>Nucleic Acid Conformation</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>post-transcriptional modification</topic><topic>Research Paper</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Transfer - chemistry</topic><topic>Substrate Specificity</topic><topic>Tenericutes - genetics</topic><topic>Tenericutes - metabolism</topic><topic>tRNA</topic><topic>Uridine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faivre, Bruno</creatorcontrib><creatorcontrib>Lombard, Murielle</creatorcontrib><creatorcontrib>Fakroun, Soufyan</creatorcontrib><creatorcontrib>Vo, Chau-Duy-Tam</creatorcontrib><creatorcontrib>Goyenvalle, Catherine</creatorcontrib><creatorcontrib>Guérineau, Vincent</creatorcontrib><creatorcontrib>Pecqueur, Ludovic</creatorcontrib><creatorcontrib>Fontecave, Marc</creatorcontrib><creatorcontrib>De Crécy-Lagard, Valérie</creatorcontrib><creatorcontrib>Brégeon, Damien</creatorcontrib><creatorcontrib>Hamdane, Djemel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RNA biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faivre, Bruno</au><au>Lombard, Murielle</au><au>Fakroun, Soufyan</au><au>Vo, Chau-Duy-Tam</au><au>Goyenvalle, Catherine</au><au>Guérineau, Vincent</au><au>Pecqueur, Ludovic</au><au>Fontecave, Marc</au><au>De Crécy-Lagard, Valérie</au><au>Brégeon, Damien</au><au>Hamdane, Djemel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes</atitle><jtitle>RNA biology</jtitle><addtitle>RNA Biol</addtitle><date>2021-12-02</date><risdate>2021</risdate><volume>18</volume><issue>12</issue><spage>2278</spage><epage>2289</epage><pages>2278-2289</pages><issn>1547-6286</issn><eissn>1555-8584</eissn><abstract>Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusB
MCap
), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusB
MCap
modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>33685366</pmid><doi>10.1080/15476286.2021.1899653</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1747-5016</orcidid><orcidid>https://orcid.org/0000-0002-8016-4747</orcidid><orcidid>https://orcid.org/0000-0002-4775-3494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1547-6286 |
ispartof | RNA biology, 2021-12, Vol.18 (12), p.2278-2289 |
issn | 1547-6286 1555-8584 |
language | eng |
recordid | cdi_crossref_primary_10_1080_15476286_2021_1899653 |
source | PubMed Central |
subjects | Bacterial Proteins - genetics Bacterial Proteins - metabolism Biochemistry, Molecular Biology Cloning, Molecular dihydrouridine Escherichia coli - genetics Evolution, Molecular Life Sciences Models, Molecular mollicutes multisite-specificity Nucleic Acid Conformation Oxidoreductases - genetics Oxidoreductases - metabolism post-transcriptional modification Research Paper RNA, Bacterial - chemistry RNA, Transfer - chemistry Substrate Specificity Tenericutes - genetics Tenericutes - metabolism tRNA Uridine - metabolism |
title | Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dihydrouridine%20synthesis%20in%20tRNAs%20is%20under%20reductive%20evolution%20in%20Mollicutes&rft.jtitle=RNA%20biology&rft.au=Faivre,%20Bruno&rft.date=2021-12-02&rft.volume=18&rft.issue=12&rft.spage=2278&rft.epage=2289&rft.pages=2278-2289&rft.issn=1547-6286&rft.eissn=1555-8584&rft_id=info:doi/10.1080/15476286.2021.1899653&rft_dat=%3Cproquest_cross%3E2499385654%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499385654&rft_id=info:pmid/33685366&rfr_iscdi=true |