Loading…

Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes

Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Esch...

Full description

Saved in:
Bibliographic Details
Published in:RNA biology 2021-12, Vol.18 (12), p.2278-2289
Main Authors: Faivre, Bruno, Lombard, Murielle, Fakroun, Soufyan, Vo, Chau-Duy-Tam, Goyenvalle, Catherine, Guérineau, Vincent, Pecqueur, Ludovic, Fontecave, Marc, De Crécy-Lagard, Valérie, Brégeon, Damien, Hamdane, Djemel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3
cites cdi_FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3
container_end_page 2289
container_issue 12
container_start_page 2278
container_title RNA biology
container_volume 18
creator Faivre, Bruno
Lombard, Murielle
Fakroun, Soufyan
Vo, Chau-Duy-Tam
Goyenvalle, Catherine
Guérineau, Vincent
Pecqueur, Ludovic
Fontecave, Marc
De Crécy-Lagard, Valérie
Brégeon, Damien
Hamdane, Djemel
description Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusB MCap ), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusB MCap modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.
doi_str_mv 10.1080/15476286.2021.1899653
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15476286_2021_1899653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499385654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMozkN_glJLXVSbRyWVbMRmdByhVRBdh1RyY0fSyZhUtfS_t4ruGdSFq3u4-c65hIPQM4JXBEv8ivCuF1SKFcWUrIhUSnD2AJ0TznkrueweLrrr2wU6Qxe1_sCYCan4Y3TGZsGZEOdo8zZsD67kqQQXEjT1kMYt1FCbkJrxy6f1LGozJQelKeAmO4Y9NLDPcRpDTgv1MccY7DRCfYIeeRMrPD3NS_Tt-t3Xq5t28_n9h6v1prUc07FVHntlPQyCS3A99IP0PaFWOuuYlJLwAfpOiA6TXqreUOIGEIxgKw211rNL9PqYezsNO3AW0lhM1Lcl7Ew56GyC_vslha3-nvdaCkYJVXPAy2PA9h_bzXqjlx1mkvWE0z2Z2RenYyX_nKCOeheqhRhNgjxVTTulmOSCdzPKj6gtudYC_j6bYL20pu9a00tr-tTa7Hv-53_uXXc1zcCbIxCSz2VnfuUSnR7NIebii0k2VM3-f-M3YkGoLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499385654</pqid></control><display><type>article</type><title>Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes</title><source>PubMed Central</source><creator>Faivre, Bruno ; Lombard, Murielle ; Fakroun, Soufyan ; Vo, Chau-Duy-Tam ; Goyenvalle, Catherine ; Guérineau, Vincent ; Pecqueur, Ludovic ; Fontecave, Marc ; De Crécy-Lagard, Valérie ; Brégeon, Damien ; Hamdane, Djemel</creator><creatorcontrib>Faivre, Bruno ; Lombard, Murielle ; Fakroun, Soufyan ; Vo, Chau-Duy-Tam ; Goyenvalle, Catherine ; Guérineau, Vincent ; Pecqueur, Ludovic ; Fontecave, Marc ; De Crécy-Lagard, Valérie ; Brégeon, Damien ; Hamdane, Djemel</creatorcontrib><description>Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusB MCap ), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusB MCap modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.</description><identifier>ISSN: 1547-6286</identifier><identifier>EISSN: 1555-8584</identifier><identifier>DOI: 10.1080/15476286.2021.1899653</identifier><identifier>PMID: 33685366</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biochemistry, Molecular Biology ; Cloning, Molecular ; dihydrouridine ; Escherichia coli - genetics ; Evolution, Molecular ; Life Sciences ; Models, Molecular ; mollicutes ; multisite-specificity ; Nucleic Acid Conformation ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; post-transcriptional modification ; Research Paper ; RNA, Bacterial - chemistry ; RNA, Transfer - chemistry ; Substrate Specificity ; Tenericutes - genetics ; Tenericutes - metabolism ; tRNA ; Uridine - metabolism</subject><ispartof>RNA biology, 2021-12, Vol.18 (12), p.2278-2289</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3</citedby><cites>FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3</cites><orcidid>0000-0002-1747-5016 ; 0000-0002-8016-4747 ; 0000-0002-4775-3494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632129/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632129/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33685366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03837152$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Faivre, Bruno</creatorcontrib><creatorcontrib>Lombard, Murielle</creatorcontrib><creatorcontrib>Fakroun, Soufyan</creatorcontrib><creatorcontrib>Vo, Chau-Duy-Tam</creatorcontrib><creatorcontrib>Goyenvalle, Catherine</creatorcontrib><creatorcontrib>Guérineau, Vincent</creatorcontrib><creatorcontrib>Pecqueur, Ludovic</creatorcontrib><creatorcontrib>Fontecave, Marc</creatorcontrib><creatorcontrib>De Crécy-Lagard, Valérie</creatorcontrib><creatorcontrib>Brégeon, Damien</creatorcontrib><creatorcontrib>Hamdane, Djemel</creatorcontrib><title>Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes</title><title>RNA biology</title><addtitle>RNA Biol</addtitle><description>Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusB MCap ), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusB MCap modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cloning, Molecular</subject><subject>dihydrouridine</subject><subject>Escherichia coli - genetics</subject><subject>Evolution, Molecular</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>mollicutes</subject><subject>multisite-specificity</subject><subject>Nucleic Acid Conformation</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>post-transcriptional modification</subject><subject>Research Paper</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Transfer - chemistry</subject><subject>Substrate Specificity</subject><subject>Tenericutes - genetics</subject><subject>Tenericutes - metabolism</subject><subject>tRNA</subject><subject>Uridine - metabolism</subject><issn>1547-6286</issn><issn>1555-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhYMozkN_glJLXVSbRyWVbMRmdByhVRBdh1RyY0fSyZhUtfS_t4ruGdSFq3u4-c65hIPQM4JXBEv8ivCuF1SKFcWUrIhUSnD2AJ0TznkrueweLrrr2wU6Qxe1_sCYCan4Y3TGZsGZEOdo8zZsD67kqQQXEjT1kMYt1FCbkJrxy6f1LGozJQelKeAmO4Y9NLDPcRpDTgv1MccY7DRCfYIeeRMrPD3NS_Tt-t3Xq5t28_n9h6v1prUc07FVHntlPQyCS3A99IP0PaFWOuuYlJLwAfpOiA6TXqreUOIGEIxgKw211rNL9PqYezsNO3AW0lhM1Lcl7Ew56GyC_vslha3-nvdaCkYJVXPAy2PA9h_bzXqjlx1mkvWE0z2Z2RenYyX_nKCOeheqhRhNgjxVTTulmOSCdzPKj6gtudYC_j6bYL20pu9a00tr-tTa7Hv-53_uXXc1zcCbIxCSz2VnfuUSnR7NIebii0k2VM3-f-M3YkGoLA</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Faivre, Bruno</creator><creator>Lombard, Murielle</creator><creator>Fakroun, Soufyan</creator><creator>Vo, Chau-Duy-Tam</creator><creator>Goyenvalle, Catherine</creator><creator>Guérineau, Vincent</creator><creator>Pecqueur, Ludovic</creator><creator>Fontecave, Marc</creator><creator>De Crécy-Lagard, Valérie</creator><creator>Brégeon, Damien</creator><creator>Hamdane, Djemel</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1747-5016</orcidid><orcidid>https://orcid.org/0000-0002-8016-4747</orcidid><orcidid>https://orcid.org/0000-0002-4775-3494</orcidid></search><sort><creationdate>20211202</creationdate><title>Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes</title><author>Faivre, Bruno ; Lombard, Murielle ; Fakroun, Soufyan ; Vo, Chau-Duy-Tam ; Goyenvalle, Catherine ; Guérineau, Vincent ; Pecqueur, Ludovic ; Fontecave, Marc ; De Crécy-Lagard, Valérie ; Brégeon, Damien ; Hamdane, Djemel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cloning, Molecular</topic><topic>dihydrouridine</topic><topic>Escherichia coli - genetics</topic><topic>Evolution, Molecular</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>mollicutes</topic><topic>multisite-specificity</topic><topic>Nucleic Acid Conformation</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>post-transcriptional modification</topic><topic>Research Paper</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Transfer - chemistry</topic><topic>Substrate Specificity</topic><topic>Tenericutes - genetics</topic><topic>Tenericutes - metabolism</topic><topic>tRNA</topic><topic>Uridine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faivre, Bruno</creatorcontrib><creatorcontrib>Lombard, Murielle</creatorcontrib><creatorcontrib>Fakroun, Soufyan</creatorcontrib><creatorcontrib>Vo, Chau-Duy-Tam</creatorcontrib><creatorcontrib>Goyenvalle, Catherine</creatorcontrib><creatorcontrib>Guérineau, Vincent</creatorcontrib><creatorcontrib>Pecqueur, Ludovic</creatorcontrib><creatorcontrib>Fontecave, Marc</creatorcontrib><creatorcontrib>De Crécy-Lagard, Valérie</creatorcontrib><creatorcontrib>Brégeon, Damien</creatorcontrib><creatorcontrib>Hamdane, Djemel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RNA biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faivre, Bruno</au><au>Lombard, Murielle</au><au>Fakroun, Soufyan</au><au>Vo, Chau-Duy-Tam</au><au>Goyenvalle, Catherine</au><au>Guérineau, Vincent</au><au>Pecqueur, Ludovic</au><au>Fontecave, Marc</au><au>De Crécy-Lagard, Valérie</au><au>Brégeon, Damien</au><au>Hamdane, Djemel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes</atitle><jtitle>RNA biology</jtitle><addtitle>RNA Biol</addtitle><date>2021-12-02</date><risdate>2021</risdate><volume>18</volume><issue>12</issue><spage>2278</spage><epage>2289</epage><pages>2278-2289</pages><issn>1547-6286</issn><eissn>1555-8584</eissn><abstract>Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusB MCap ), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusB MCap modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>33685366</pmid><doi>10.1080/15476286.2021.1899653</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1747-5016</orcidid><orcidid>https://orcid.org/0000-0002-8016-4747</orcidid><orcidid>https://orcid.org/0000-0002-4775-3494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1547-6286
ispartof RNA biology, 2021-12, Vol.18 (12), p.2278-2289
issn 1547-6286
1555-8584
language eng
recordid cdi_crossref_primary_10_1080_15476286_2021_1899653
source PubMed Central
subjects Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biochemistry, Molecular Biology
Cloning, Molecular
dihydrouridine
Escherichia coli - genetics
Evolution, Molecular
Life Sciences
Models, Molecular
mollicutes
multisite-specificity
Nucleic Acid Conformation
Oxidoreductases - genetics
Oxidoreductases - metabolism
post-transcriptional modification
Research Paper
RNA, Bacterial - chemistry
RNA, Transfer - chemistry
Substrate Specificity
Tenericutes - genetics
Tenericutes - metabolism
tRNA
Uridine - metabolism
title Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dihydrouridine%20synthesis%20in%20tRNAs%20is%20under%20reductive%20evolution%20in%20Mollicutes&rft.jtitle=RNA%20biology&rft.au=Faivre,%20Bruno&rft.date=2021-12-02&rft.volume=18&rft.issue=12&rft.spage=2278&rft.epage=2289&rft.pages=2278-2289&rft.issn=1547-6286&rft.eissn=1555-8584&rft_id=info:doi/10.1080/15476286.2021.1899653&rft_dat=%3Cproquest_cross%3E2499385654%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-9f0f9cfeb658ed7e7b8f712c8dcd388815be74664017897a21dbe6310c8a2ccf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2499385654&rft_id=info:pmid/33685366&rfr_iscdi=true