Loading…
Synthesis, Characterization, Reactivity, and Antibacterial Studies of Triethylammonium-3-silatranylpropyldithiocarbamate, Spectroscopic, and Quantum Mechanical Studies of 3-(Silatranyl)propylammonium Chloride
3-aminopropylsilatrane (1) was crystallized as its hydrochloride salt, 3-(silatranyl)propylammonium chloride (2), which was confirmed by spectroscopic and X-ray diffraction studies. Single-crystal X-ray data revealed orthorhombic crystal system (space group = P2 1 2 1 2 1 ) with three molecules pack...
Saved in:
Published in: | Synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry metal-organic, and nano-metal chemistry, 2012-07, Vol.42 (6), p.823-832 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c307t-fdf1c2911eea8bbb91fec66c6de9fa9c60d31ea5826a603bf27bf860d3ebdef03 |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-fdf1c2911eea8bbb91fec66c6de9fa9c60d31ea5826a603bf27bf860d3ebdef03 |
container_end_page | 832 |
container_issue | 6 |
container_start_page | 823 |
container_title | Synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry |
container_volume | 42 |
creator | Singh, Raghubir Puri, Jugal Kishore Chahal, Varinder Kaur Sharma, Raj Pal Kohli, Sabeta Kant, Rajni Gill, Baljinder Singh |
description | 3-aminopropylsilatrane (1) was crystallized as its hydrochloride salt, 3-(silatranyl)propylammonium chloride (2), which was confirmed by spectroscopic and X-ray diffraction studies. Single-crystal X-ray data revealed orthorhombic crystal system (space group = P2
1
2
1
2
1
) with three molecules packed in an asymmetric unit cell. Herein, a special emphasis on the experimental and computational methods is given to study the geometric and spectroscopic parameters of 3-(silatranyl)propylammonium chloride (2). The scaled values of vibrational frequencies were obtained by using different basis sets. To study the reactivity of 1 toward nucleophilic addition reactions, it was treated with CS
2
in the presence of triethylamine, which resulted in a novel silatrane, triethylammonium-3-silatranylpropyldithiocarbamate (4). Due to its ability to act as bidentate ligand (L), reactivity of 4 was studied by reacting it with Cu(II), Co(II), Ni(II), and Pd(II) metal salts. The composition, nature of bonding, and geometry of complexes have been deduced from elemental analysis, and infrared and electronic spectral studies. The electronic and vibrational absorption spectra of these complexes indicated the formation of Cu(II), Ni(II), and Pd(II) complexes in 1: 2 ratio but 1:3 ratio (M:L) in Co(II) complex. Compound 4 is found to be moderately active against some bacteria such as Esherichia coli, Bacillus subtillus, and Staphylococcus aureus. |
doi_str_mv | 10.1080/15533174.2011.618474 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15533174_2011_618474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_15533174_2011_618474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-fdf1c2911eea8bbb91fec66c6de9fa9c60d31ea5826a603bf27bf860d3ebdef03</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1poGnSf9CDjg2sN5Llrz2FsKRJIKEkm57NWBrhKbZkJG2C-yv7k-LFTaCXnuaDmeed4U2Sr4KvBa_5uSgKKUWVrzMuxLoUdV7lH5LjQzuVos4-vudV_in5HMIvzmVRF9Vx8mc32dhhoLBi2w48qIiefkMkZ1fsEeeanilOKwZWs0sbqV1GoGe7uNeEgTnDnjxh7KYehsFZ2g-pTAP1ED3YqR-9G6deU-zIKfAtDBBxxXYjquhdUG4ktfAf9mDjfmD3qDqwpP4Vkem33Tv0bKG-Cc7H986TxtPkyEAf8MvfeJL8_H71tL1J735c324v71IleRVTo41Q2UYIRKjbtt0Ig6osValxY2CjSq6lQCjqrISSy9ZkVWvqQxdbjYbLkyRfuGp-IXg0zehpAD81gjcHV5o3V5qDK83iyrx2sayRNc4P8OJ8r5sI03y9mR9TFBr5X8IrTOKcZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis, Characterization, Reactivity, and Antibacterial Studies of Triethylammonium-3-silatranylpropyldithiocarbamate, Spectroscopic, and Quantum Mechanical Studies of 3-(Silatranyl)propylammonium Chloride</title><source>Taylor and Francis Science and Technology Collection</source><creator>Singh, Raghubir ; Puri, Jugal Kishore ; Chahal, Varinder Kaur ; Sharma, Raj Pal ; Kohli, Sabeta ; Kant, Rajni ; Gill, Baljinder Singh</creator><creatorcontrib>Singh, Raghubir ; Puri, Jugal Kishore ; Chahal, Varinder Kaur ; Sharma, Raj Pal ; Kohli, Sabeta ; Kant, Rajni ; Gill, Baljinder Singh</creatorcontrib><description>3-aminopropylsilatrane (1) was crystallized as its hydrochloride salt, 3-(silatranyl)propylammonium chloride (2), which was confirmed by spectroscopic and X-ray diffraction studies. Single-crystal X-ray data revealed orthorhombic crystal system (space group = P2
1
2
1
2
1
) with three molecules packed in an asymmetric unit cell. Herein, a special emphasis on the experimental and computational methods is given to study the geometric and spectroscopic parameters of 3-(silatranyl)propylammonium chloride (2). The scaled values of vibrational frequencies were obtained by using different basis sets. To study the reactivity of 1 toward nucleophilic addition reactions, it was treated with CS
2
in the presence of triethylamine, which resulted in a novel silatrane, triethylammonium-3-silatranylpropyldithiocarbamate (4). Due to its ability to act as bidentate ligand (L), reactivity of 4 was studied by reacting it with Cu(II), Co(II), Ni(II), and Pd(II) metal salts. The composition, nature of bonding, and geometry of complexes have been deduced from elemental analysis, and infrared and electronic spectral studies. The electronic and vibrational absorption spectra of these complexes indicated the formation of Cu(II), Ni(II), and Pd(II) complexes in 1: 2 ratio but 1:3 ratio (M:L) in Co(II) complex. Compound 4 is found to be moderately active against some bacteria such as Esherichia coli, Bacillus subtillus, and Staphylococcus aureus.</description><identifier>ISSN: 1553-3174</identifier><identifier>EISSN: 1553-3182</identifier><identifier>DOI: 10.1080/15533174.2011.618474</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>3-aminopropylsilatrane ; DFT ; dithiocarbamate ; metal complexes ; Triethylammonium-3-silatranylpropyl- dithiocarbamate</subject><ispartof>Synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry, 2012-07, Vol.42 (6), p.823-832</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-fdf1c2911eea8bbb91fec66c6de9fa9c60d31ea5826a603bf27bf860d3ebdef03</citedby><cites>FETCH-LOGICAL-c307t-fdf1c2911eea8bbb91fec66c6de9fa9c60d31ea5826a603bf27bf860d3ebdef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, Raghubir</creatorcontrib><creatorcontrib>Puri, Jugal Kishore</creatorcontrib><creatorcontrib>Chahal, Varinder Kaur</creatorcontrib><creatorcontrib>Sharma, Raj Pal</creatorcontrib><creatorcontrib>Kohli, Sabeta</creatorcontrib><creatorcontrib>Kant, Rajni</creatorcontrib><creatorcontrib>Gill, Baljinder Singh</creatorcontrib><title>Synthesis, Characterization, Reactivity, and Antibacterial Studies of Triethylammonium-3-silatranylpropyldithiocarbamate, Spectroscopic, and Quantum Mechanical Studies of 3-(Silatranyl)propylammonium Chloride</title><title>Synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry</title><description>3-aminopropylsilatrane (1) was crystallized as its hydrochloride salt, 3-(silatranyl)propylammonium chloride (2), which was confirmed by spectroscopic and X-ray diffraction studies. Single-crystal X-ray data revealed orthorhombic crystal system (space group = P2
1
2
1
2
1
) with three molecules packed in an asymmetric unit cell. Herein, a special emphasis on the experimental and computational methods is given to study the geometric and spectroscopic parameters of 3-(silatranyl)propylammonium chloride (2). The scaled values of vibrational frequencies were obtained by using different basis sets. To study the reactivity of 1 toward nucleophilic addition reactions, it was treated with CS
2
in the presence of triethylamine, which resulted in a novel silatrane, triethylammonium-3-silatranylpropyldithiocarbamate (4). Due to its ability to act as bidentate ligand (L), reactivity of 4 was studied by reacting it with Cu(II), Co(II), Ni(II), and Pd(II) metal salts. The composition, nature of bonding, and geometry of complexes have been deduced from elemental analysis, and infrared and electronic spectral studies. The electronic and vibrational absorption spectra of these complexes indicated the formation of Cu(II), Ni(II), and Pd(II) complexes in 1: 2 ratio but 1:3 ratio (M:L) in Co(II) complex. Compound 4 is found to be moderately active against some bacteria such as Esherichia coli, Bacillus subtillus, and Staphylococcus aureus.</description><subject>3-aminopropylsilatrane</subject><subject>DFT</subject><subject>dithiocarbamate</subject><subject>metal complexes</subject><subject>Triethylammonium-3-silatranylpropyl- dithiocarbamate</subject><issn>1553-3174</issn><issn>1553-3182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhk1poGnSf9CDjg2sN5Llrz2FsKRJIKEkm57NWBrhKbZkJG2C-yv7k-LFTaCXnuaDmeed4U2Sr4KvBa_5uSgKKUWVrzMuxLoUdV7lH5LjQzuVos4-vudV_in5HMIvzmVRF9Vx8mc32dhhoLBi2w48qIiefkMkZ1fsEeeanilOKwZWs0sbqV1GoGe7uNeEgTnDnjxh7KYehsFZ2g-pTAP1ED3YqR-9G6deU-zIKfAtDBBxxXYjquhdUG4ktfAf9mDjfmD3qDqwpP4Vkem33Tv0bKG-Cc7H986TxtPkyEAf8MvfeJL8_H71tL1J735c324v71IleRVTo41Q2UYIRKjbtt0Ig6osValxY2CjSq6lQCjqrISSy9ZkVWvqQxdbjYbLkyRfuGp-IXg0zehpAD81gjcHV5o3V5qDK83iyrx2sayRNc4P8OJ8r5sI03y9mR9TFBr5X8IrTOKcZA</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Singh, Raghubir</creator><creator>Puri, Jugal Kishore</creator><creator>Chahal, Varinder Kaur</creator><creator>Sharma, Raj Pal</creator><creator>Kohli, Sabeta</creator><creator>Kant, Rajni</creator><creator>Gill, Baljinder Singh</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120701</creationdate><title>Synthesis, Characterization, Reactivity, and Antibacterial Studies of Triethylammonium-3-silatranylpropyldithiocarbamate, Spectroscopic, and Quantum Mechanical Studies of 3-(Silatranyl)propylammonium Chloride</title><author>Singh, Raghubir ; Puri, Jugal Kishore ; Chahal, Varinder Kaur ; Sharma, Raj Pal ; Kohli, Sabeta ; Kant, Rajni ; Gill, Baljinder Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-fdf1c2911eea8bbb91fec66c6de9fa9c60d31ea5826a603bf27bf860d3ebdef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3-aminopropylsilatrane</topic><topic>DFT</topic><topic>dithiocarbamate</topic><topic>metal complexes</topic><topic>Triethylammonium-3-silatranylpropyl- dithiocarbamate</topic><toplevel>online_resources</toplevel><creatorcontrib>Singh, Raghubir</creatorcontrib><creatorcontrib>Puri, Jugal Kishore</creatorcontrib><creatorcontrib>Chahal, Varinder Kaur</creatorcontrib><creatorcontrib>Sharma, Raj Pal</creatorcontrib><creatorcontrib>Kohli, Sabeta</creatorcontrib><creatorcontrib>Kant, Rajni</creatorcontrib><creatorcontrib>Gill, Baljinder Singh</creatorcontrib><collection>CrossRef</collection><jtitle>Synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Raghubir</au><au>Puri, Jugal Kishore</au><au>Chahal, Varinder Kaur</au><au>Sharma, Raj Pal</au><au>Kohli, Sabeta</au><au>Kant, Rajni</au><au>Gill, Baljinder Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, Characterization, Reactivity, and Antibacterial Studies of Triethylammonium-3-silatranylpropyldithiocarbamate, Spectroscopic, and Quantum Mechanical Studies of 3-(Silatranyl)propylammonium Chloride</atitle><jtitle>Synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>42</volume><issue>6</issue><spage>823</spage><epage>832</epage><pages>823-832</pages><issn>1553-3174</issn><eissn>1553-3182</eissn><abstract>3-aminopropylsilatrane (1) was crystallized as its hydrochloride salt, 3-(silatranyl)propylammonium chloride (2), which was confirmed by spectroscopic and X-ray diffraction studies. Single-crystal X-ray data revealed orthorhombic crystal system (space group = P2
1
2
1
2
1
) with three molecules packed in an asymmetric unit cell. Herein, a special emphasis on the experimental and computational methods is given to study the geometric and spectroscopic parameters of 3-(silatranyl)propylammonium chloride (2). The scaled values of vibrational frequencies were obtained by using different basis sets. To study the reactivity of 1 toward nucleophilic addition reactions, it was treated with CS
2
in the presence of triethylamine, which resulted in a novel silatrane, triethylammonium-3-silatranylpropyldithiocarbamate (4). Due to its ability to act as bidentate ligand (L), reactivity of 4 was studied by reacting it with Cu(II), Co(II), Ni(II), and Pd(II) metal salts. The composition, nature of bonding, and geometry of complexes have been deduced from elemental analysis, and infrared and electronic spectral studies. The electronic and vibrational absorption spectra of these complexes indicated the formation of Cu(II), Ni(II), and Pd(II) complexes in 1: 2 ratio but 1:3 ratio (M:L) in Co(II) complex. Compound 4 is found to be moderately active against some bacteria such as Esherichia coli, Bacillus subtillus, and Staphylococcus aureus.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/15533174.2011.618474</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-3174 |
ispartof | Synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry, 2012-07, Vol.42 (6), p.823-832 |
issn | 1553-3174 1553-3182 |
language | eng |
recordid | cdi_crossref_primary_10_1080_15533174_2011_618474 |
source | Taylor and Francis Science and Technology Collection |
subjects | 3-aminopropylsilatrane DFT dithiocarbamate metal complexes Triethylammonium-3-silatranylpropyl- dithiocarbamate |
title | Synthesis, Characterization, Reactivity, and Antibacterial Studies of Triethylammonium-3-silatranylpropyldithiocarbamate, Spectroscopic, and Quantum Mechanical Studies of 3-(Silatranyl)propylammonium Chloride |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20Characterization,%20Reactivity,%20and%20Antibacterial%20Studies%20of%20Triethylammonium-3-silatranylpropyldithiocarbamate,%20Spectroscopic,%20and%20Quantum%20Mechanical%20Studies%20of%203-(Silatranyl)propylammonium%20Chloride&rft.jtitle=Synthesis%20and%20reactivity%20in%20inorganic,%20metal-organic,%20and%20nano-metal%20chemistry&rft.au=Singh,%20Raghubir&rft.date=2012-07-01&rft.volume=42&rft.issue=6&rft.spage=823&rft.epage=832&rft.pages=823-832&rft.issn=1553-3174&rft.eissn=1553-3182&rft_id=info:doi/10.1080/15533174.2011.618474&rft_dat=%3Ccrossref_infor%3E10_1080_15533174_2011_618474%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-fdf1c2911eea8bbb91fec66c6de9fa9c60d31ea5826a603bf27bf860d3ebdef03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |