Loading…
How RB1CC1/FIP200 claws its way to autophagic engulfment of SQSTM1/p62-ubiquitin condensates
Macroautophagy/autophagy mediates the degradation of ubiquitinated aggregated proteins within lysosomes in a process known as aggrephagy. The cargo receptor SQSTM1/p62 condenses aggregated proteins into larger structures and links them to the nascent autophagosomal membrane (phagophore). How the con...
Saved in:
Published in: | Autophagy 2019-08, Vol.15 (8), p.1475-1477 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Macroautophagy/autophagy mediates the degradation of ubiquitinated aggregated proteins within lysosomes in a process known as aggrephagy. The cargo receptor SQSTM1/p62 condenses aggregated proteins into larger structures and links them to the nascent autophagosomal membrane (phagophore). How the condensation reaction and autophagosome formation are coupled is unclear. We recently discovered that a region of SQSTM1 containing its LIR motif directly interacts with RB1CC1/FIP200, a protein acting at early stages of autophagosome formation. Determination of the structure of the C-terminal region of RB1CC1 revealed a claw-shaped domain. Using a structure-function approach, we show that the interaction of SQSTM1 with the RB1CC1 claw domain is crucial for the productive recruitment of the autophagy machinery to ubiquitin-positive condensates and their subsequent degradation by autophagy. We also found that concentrated Atg8-family proteins on the phagophore displace RB1CC1 from SQSTM1, suggesting an intrinsic directionality in the process of autophagosome formation. Ultimately, our study reveals how the interplay of SQSTM1 and RB1CC1 couples cargo condensation to autophagosome formation. |
---|---|
ISSN: | 1554-8627 1554-8635 |
DOI: | 10.1080/15548627.2019.1615306 |